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Abstract. Nonlocal damage models are introduced to overcome the strain localization and mesh 

dependence problem. However, the convergence and computational efficiency are a big issue, 

especially for 3D analysis. To construct an efficient treatment for nonlocal damage modeling, a new 

integration algorithm is proposed in analogy to meshless methods in the present paper. This 

algorithm is easy to be implemented into commercial software and can be directly extended for 

complex material models. An integration algorithm for 3D domains is implemented in the 

commercial software ABAQUS via UMAT. Crack propagation in cracked specimens under both 

tension and bending condition is investigated and confirms that with the new algorithm the strain 

localization is eliminated. 3D modeling of cracking reveals high efficiency in computations. 

Computational results agree reasonably with experiments. 

 

1. Introduction  

In order to eliminate the strain localization or the mesh dependence problem existing in the 

conventional theory when the stain-softening or damage solids are analyzed, an internal length scale 

is often introduced in different ways. Generally speaking, elimination of strain localization can be 

classified three sorts. The first one is the integration algorithm, the local value of the evaluation 

points are replaced by the integration ones in there adjoining domains in these models [1-2], whose 

sizes are dominated by the intrinsic material length. A common difficulty in these models is in 

implementation into a commercial FEM code, moreover, searching adjoining points is storage- and 

time-consuming. Another important kind of nonlocal models [3–6] is so-called gradient theories by 

taking gradients of porosity or strains of all orders for regulating strain distributions. In all these 

models, additional degrees of freedom and equations are needed, which increase the computational 

cost. Furthermore, solving high-order gradient equations could cause convergence problems. The 

last broad group can be identified as the micro-polar continuum model [7–9] which can eliminate 

the strain localization in shear softening cases by introducing the extra rotating terms, but this model 

cannot be used for the tensile softening, especially in analysis of mode I crack propagation this kind 

of models is still to be improved. 

       In the present work, a new integration algorithm is proposed to implement the regulation of 

damage variables in the domain characterized by the intrinsic material length, based on the 

background element concept of meshless methods. Using the algorithm gradients of strains or other 

variables can be evaluated efficiently and accurately, the strain gradient theory for damage or 

plasticity can be easily implemented into the conventional FEM code. 

 

2. Nonlocal damage model with the strain gradient 



Both Aifantis [10] and Gao et al. [11] assume that the flow stress depends on strain gradients, that is, 

the effective stress can be expressed as 
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0 ( , , , )F       ,                                                                                                                  (1) 

where 0  is the reference stress from uniaxial tension tests. F is a dimensionless function 

describing material flow after yielding. 1/2(2 3)p p
ij ij    stands for the equivalent plastic strain rate. 

The total equivalent plastic strain is defined based on the integration of the rate, dt   . If the 

gradients vanish, Eq. (1) is the known stress-strain relationship from the tensile tests. Chen and 

Yuan [12-13] assume simply that the actual flow stress which is related to the gradient of the 

equivalent plastic strain as 
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The material length scale Li has been introduced by Fleck and Hutchinson [14] to characterize 

effects of the material micro-structure. In this present paper, a damage model based the first-order of 

plastic strain gradient is introduced following the GTN model [15] as: 
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where  is to be fitted using the experiments. In the equation above Y denotes yield stress of the 

matrix.  Then, the yield condition of the GTN model is given by 
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where the constants q1 and q2 were introduced by Tvergaard [16] to consider interactions of voids. 

S=pI+ is the deviatoric part of the macroscopic Cauchy tensor ; q=(3S:S/2)
1/2

 is the Mises stress; 

p is the hydrostatic pressure, and  f 
* 

is the function of the void volume fraction (VVF), depending 

on the porosity of material, f. To consider rapid expansion of voids beyond the critical porosity fc, 

Tvergaard and Needleman introduced bi-linear extrapolation of the porosity, f 
* 
is defined as 
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with  as the acceleration factor reflects the acceleration of void growth after coalescence, fl  is 

the value of VVF when the material is fully damaged. The evolution equation for  VVF consists of 

both void nucleation and growth, 
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where 
p
ij  is the plastic strain rate tensor in the updated Lagrange configuration. A strain controlled 

nucleation law is suggested by Chu and Needleman where the parameter A is chosen so that the 

nucleation strain follows a normal distribution with mean value N  and standard deviation sN. fN is 

the volume fraction of the nucleated voids, and voids are nucleated only in tension. In this work, the 

void nucleation is not considered and fN is taken as 0. So that 
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The plastic strains are derived from the yield potential, ; the presence of the first invariant of the 

stress tensor in the yield condition results in plastic strains: 
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where   is the nonnegative plastic multiplier. The evolution of equivalent plastic strain is assumed 

to be governed by the equivalent plastic work expression, i.e., 
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   Figure 1.  The sketch for the relationship between the evaluation   

    point and the nodes on the background mesh in the case of 2D.          

  

 

 

 

 

3. A new nonlocal approach 

One big issue in gradient theory is in evaluating the gradient of strains or other field variables since 

the C0 element formulation does not provide continuous distributions of them. Using C1 element 

formulation causes difficulties in convergence [5,12]. The direct interpolation becomes unpractical 

for 3D computations. In Fig. 1, we show the topological relationship between the evaluation points 

and the nodes on the background mesh in the case of 2D. Because the element on the background 

mesh is a rectangular (in 2D) or a cuboid (in 3D), the nodes are very easy to be indexed. In 2D, 

suppose that the coordinate of left bottom node on this mesh is (x0, y0), the element length and 

height are lx and ly, respectively. If the coordinate of the evaluation point m is (x, y), we can easily 

get the index of a element which the evaluation point belongs to. The element index (i, j) can be 

expressed as following, 
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so that we can get the node indices of this element: (i, j), (i+1, j), (i+1, j+1) and (i, j+1), which are 

the most closest nodes to this evaluation point. This algorithm can be extended to 3D directly, if the 

coordinates of the evaluation point m are (x, y, z), then the index of associated element is given by, 
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where (x0, y0, z0) are the coordinates of left bottom node in the rear surface on the mesh and the 

element length, height and width are lx, ly and lz, respectively, then the node indices of this element 

are: (i, j, k), (i+1, j, k), (i+1, j+1, k), (i, j+1, k), (i, j, k+1), (i+1, j, k+1), (i+1, j+1, k+1) and (i, j+1, 



k+1). Furthermore, we can get the nodes in the point influence domain, which is defined here as a 

circle (in 2D) or a ball (in 3D) centered at Point m. The radius of the circle/ball is the intrinsic 

material length Li. At the end of every time step, the local incremental values at the evaluation points 

are known. In order to get the nonlocal value at Point m, the following procedure should be taken:  

(1) Mapping local incremental values to nodes of the background mesh, following the algorithm of 

meshless methods. For the evaluation point m, suppose the node number (on the background 

mesh) in its influence domain is m1, m2, …, mI, respectively, where I is the total number. If the 

local incremental value is fm, then fm are mapped to these nodes, the values are ( )im

m mf W r , 

respectively, where ( )im

mW r  is the weight function, and im

mr  is the distance between the 

evaluation point and the node, which is usually defined as a compact function, such as  
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After the loop for all the evaluation points (Gauss points in FEM), the mapped nodal incremental 

value at Node g is obtained, as 

1

1

( )

( )

g

g

jJ
j j j

g jJ
j j

W r f
F

W r





 
 


                                                                                                             (13)  

where J is the total number of the evaluation points whose influence domain covers the node 

g. 

(2) Generating the nonlocal value at the evaluation point. The nonlocal incremental value at 

evaluation  point p can be expressed as  
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The averaging method presented above is based on the background element integration of 

meshless methods and can be applied to different material models. In GTN model, if we replace the 

incremental VVF with the nonlocal value, the nonlocal damage model with new integration 

algorithm is obtained. Furthermore, we can use this background mesh to compute the strain gradient 

terms in the strain gradient plasticity models. One just needs to replace f by strains. 

 

4. Computational examples 

4.1 Crack propagation simulation in a compact tension specimen.  
A compact tension specimen (CT) with initial crack length of 25mm and width of 50mm is 

considered under plane strain condition. Due to the symmetry only the upper half of the specimen 

should be modeled. The German reactor pressure vessel steel, 20MnMoNi55, is assumed following 

the data in [17]. Three different meshes are considered to examine the mesh dependence, the lengths 

of the elements ahead of the crack tip are 0.1mm, 0.05mm and 0.025mm, respectively. The GTN 

model parameters are: q1=1.5, q2=1.0, the initial VVF f0=0.01, the critical VVF fc=0.05 and the finial 

VVF fn=0.4. The final contour of VVF distributions near the crack tip are shown in Fig. 2. In Fig. 

2(a) are the results from the conventional GTN model, in which the obvious mesh dependence can 

be seen, and only one layer of elements is damaged, as the mesh becomes finer, the damage zone 

become thinner. In Fig. 2(b) are the results from the nonlocal GTN model by using the proposed 

integration algorithm, in which the intrinsic material length is taken as 0.2mm, the mesh dependence 

or strain localization problem is well eliminated. Fig. 3 shows the curves of loading vs. crack mouth 



open displacement (CMOD). In Fig. 3(a) the loading depends on element size, while in Fig. 3(b) the 

dependence is eliminated. 
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Figure 2.  iso-contours of the porosity, f 
*
 in CT specimens based on three different FEM meshes. (a) GTN 

model results. (b) Results from nonlocal model with Li=0.2mm. 

 

 

                                                                                          

 

                

 

 

 

 

 

 

 
Figure 3. The loading vs. crack mouth open displacement (CMOD) of the CT specimen. 

 

4.2  Crack propagation simulation in a bending specimen.  
The plane stress bending specimen of 20MnMoNi55 is defined as following: W=15.0mm and 

a0=7.0mm. A small notch is set near the crack tip, and the radius of the notch is 0.5mm. The 

material model parameters as well as the FEM model structure are the same as those for the CT 

specimen in the previous section. Three different meshes have been considered. The minimal 

lengths of the elements are 0.20mm, 0.10mm and 0.05mm, respectively. 

 

 

 

 
  

 

 

 

 

 

 

 
 
Figure 4. The load as a function of the load line displacement from three different meshes of the bending 

specimen are  considered. (a) Results from the GTN model as well as the nonlocal model. (b)Effects of the 

intrinsic length Li  with Lm=0.05mm. 



 

 Figure 4 illustrates loading of the bending specimen as a function of the load line displacement 

from three different meshes. As known, the conventional GNT model shows strong dependence on 

the element size and the gradient regulator eliminates the mesh dependence displayed in Fig. 4(a), in 

which the intrinsic material length is set to 0.4mm. In Fig. 4(b) results of the nonlocal model with 

different intrinsic material lengths are summarized. Generally, the material length increases strength 

of material. Effects of the intrinsic length appear only before failure of the specimen.  

 

3.3 Failure analysis in a 3D tensile bar 
The geometry of the tensile bar is illustrated in Fig. 5(a), the initial gauge length is 32mm, the width 

is 5.7mm and the thickness is 5.55mm. For symmetry only one eighth of the tensile bar has to be 

modeled. The material property of 20MnMoNi55 is used. The initial mesh distribution is depicted in 

Fig. 5(b). To study the element dependence, three different meshes are considered with the minimal 

element lengths 0.15mm, 0.095mm and 0.05mm, respectively. The GTN model parameters for the 

CT specimen applied again: q1=1.5, q2=1.0, f0=0.01,  fc=0.02 and  fn=0.4. 

 

 

 

 

 

 
Figure 5.  (a) Sketch map of the tensile bar and               Figure 6.  iso-contours of the porosity, f 

*
 in the    

(b) the initial mesh distribution.                                          tensile bar based on three different meshes.  

                                                                                        (a) GTN model results. (b) Results from nonlocal      

                                              model with Li=0.3mm. 

 

The 3D VVF distribution contours at the end of the final fracture are plotted in Fig. 6. This kind of 

specimen is popular in powder metal industry. The stress field in such specimens is generally three-

dimensional. Non-uniform distributions are obtained due to the complicated deformation pattern of 

the neck. As expected, the conventional GTN model reveals the strong element size dependence 

(Fig. 6(a)), the damage zone becomes thinner as the mesh becomes finer. Only one layer of elements 

is damaged in the computations. Nonlocal treatment in 3D specimen can be performed using the 

algorithm efficiently. In Fig. 6(b) the damage zone become independent of element size using the 

nonlocal model with the intrinsic material length equal to 0.3mm. The engineering stress-strain 

curves for three different mesh sizes are plotted in Fig. 7. In Fig. 7(a), the stress carrying capability 

is independent of FEM mesh, when stress-strain behavior is deformation hardened. The Effects of 

the mesh size becomes significant as soon as the ultimate stress is reached. The predicted material 

carrying capacity reduces with the smaller element size. The nonlocal model combined with the 

present computational algorithm provides an independent prediction of the material curve, as shown 

in Fig. 7(b).  The intrinsic material length changes material behavior, especially before the final 



failure. Fig. 8 reveals computational results with various intrinsic material lengths, whereas the 

element size in the damage zone is fixed. Obviously, the intrinsic length will only affect the final 

fracture strain, larger material length will arise the fracture strain. However, the computational 

prediction becomes unsystematic if the smallest element size is larger than the material length. The 

side necking seems less sensitive to the material length.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Effects of the element size to the engineering stress vs. engineering strain curves. (a) using the 

GNT model. (b) Prediction from the nonlocal model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Effects of the intrinsic material length to the stress-strain curve using the mesh with Lm=0.15mm. (a) 

The engineering stress vs. engineering strain. (b) Side necking vs. engineering strain.  

 

Conclusions 

In the present paper a new algorithm for nonlocal treatment in damage mechanics as well as gradient 

models has been introduced. Using the meshless method concept, the differentiation of the field 

variables can be performed based on the background mesh. A set of regular elements are introduced 

to bridge the evaluation point and the points used for the integration. The algorithm can be 



implemented into the commercial FEM code easily. Both 2D and 3D computational examples 

confirm the present algorithm is accurate, reliable and efficient. The computational results agree 

with the known simulations. 

The nonlocal model based on the first order of plastic strain gradient shows mesh-independent 

results in all studied cases. The strain localization can be well eliminated using the present model.  

 

References  

[1]  JB Leblond, G Perrin, J Devaux: J. Appl. Mech. Vol. 61 (1994), p. 236-241 

[2]  V Tvergaard, A Needleman: Int. J. Solids Struct. Vol. 32 (1995), p. 1063-1077 

[3]  S Ramasamy, N Aravas: Comput. Method Appl. M. Vol. 163 (1998), p. 33-53 

[4]  RHJ Peerlings, R de Borst, W. A. M. Brekelmans and J. H. P. De Vree: Int. J. Numer.            

Meth. Engng. Vol. 39 (1996), p. 3391-3403 

[5]  J Chen, H Yuan: Int. J. Numer. Meth. Engng. Vol. 18 (2002), p. 399-420 

[6]  H Yuan, Numerical Assessment of Cracks in Elastic-Plastic Materials, Springer              

Verlag, Berlin (2002). 

[7]  AC Eringen, DG Edelen: Int. J. Engng Sci. Vol. 10 (1972), p. 233-248 

[8]  R de Borst:  Engineering Compututions Vol. 8 (1991), p. 317-332 

[9]  W Huang, E Bauer: Int. J. Numer. Anal. Meth. Geomech. Vol. 27 (2003), p. 325-352 

[10]  Aifantis EC: Int. J. Plasticity, Vol. 3 (1987), p. 211-247 

[11]  H Gao, Y Huang, WD Nix, JW Hutchinson: J. Mech. Phys. Solids Vol. 47 (1999), p. 1239-  

            1263. 

[12]  H Yuan, J Chen: Comp. Mater. Sci. Vol. 19 (2000), p. 143-157 

[13] H Yuan, J Chen:  Int. J. Solids Struct. Vol. 38 (2001), p. 8171-8187 

[14]  NA Fleck, JW Hutchinson: J. Mech. Phys. Solids Vol. 41 (1993), p. 1825-1857 

[15]  AL Gurson: Journal of Engineering Materials and Technology Vol. 99 (1977), p. 2-15 

[16]  V Tvergaard, A Needleman: Acta Metallurgica Vol. 32 (1984), p. 157—169 

[17]  X Pan, H Yuan: Modelling Simulation Mater. Sci. Eng. Vol. 46 (2009), p. 660—666 

 


