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Abstract. A thickness-inhomogeneous elastico-plastic spherical shell weakened by a system of 
arbitrary located through cracks is considered. The shell is under external loading, and self-
equilibrated forces and moments may be applied to the crack faces. The cracks do not intersect. On 
the basis of the  model analogue and distortion method of the theory of shells with cracks the 
problem is reduced to a system of singular integral equations with unknown limits of integration 
and discontinuous functions in the right-hand side. An algorithm is proposed for numerical 
solutions of the system obtained together with plasticity conditions and conditions of stress 
boundedness near a crack. As an example, a spherical shell made of functionally gradient material 
is considered, the shell being weakened by four surface cracks. The crack opening vs. loading, 
geometrical and mechanical parameters is analyzed. 

c�

Introduction 
The shell constructional elements often operate under conditions when their outer surface is in 
corrosive surroundings with one physico-chemical parameters, and the inner surface with another. 
In such cases they are made from layer structures or functionally gradient materials (FGM), i.e. 
composites with microstructural inhomogeneity and continuously changing mechanical properties 
along the thickness of a thin-walled constructional element. The need for such materials has been 
induced, first of all, by cosmic materials science to ensure reliable operation of constructional 
elements at very high temperatures. The early results of studies on the non-uniform distribution of 
temperature and stresses caused by it in the bodies of FGM are presented in Ref. [1]. Later on the 
stressed-strained state, strength, etc., and in particular, stress distribution in cylindrical and spherical 
shells, hollow cylinder and friction node, caused by thermal or force loading, were studied [2-7]. 
The influence of physico-mechanical properties of such materials on limit equilibrium of cylindrical 
[8] and spherical [9] shells weakened by one crack was also investigated. 
  

Statement of the problem  
Consider a thickness–inhomogeneous infinite spherical shell weakened by a system of  arbitrary 
oriented plane-linear surface cracks which do not intersect. As an infinite shell we assume the shell, 
the boundaries of which are so far that they do not influence the perturbed stressed state caused by 
the crack. Suppose that the shell is under external load and the forces and moments with equal 
values but opposite directions can be applied to faces of each surface crack so that during the shell 
deformation the crack faces do not contact. Assume that the shell material is perfectly elasto-plastic 
or hardened. We shall confine ourselves to the study of sufficiently deep cracks ( ,  is 
the crack depth ( ),  is the shell thickness). The material properties, load value and 
crack sizes are assumed to be such that on their continuation plastic strains develop across the shell 

k

0.4md � h 2 md
1, 2,...,m � k 2h

556



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

thickness as a narrow strip. The material is elastic outside these zones. According to the  - model 
analogue [10,11] the plastic strain zones are substituted by surfaces of discontinuity of elastic 

displacements and rotation angles  and the response of a 
plastic strain zone to elastic volume is substituted by the 
unknown forces and moments which counteract the crack 
opening. This means that the 3D elasto-plastic problem on 
limit equilibrium of a spherical shell with a system of  
surface cracks of given sizes is reduced to the problem on 
elastic equilibrium of analogous shell with a system of  
fictitious through cracks of unknown length to the faces of 
which, in addition to the given forces and moments, the 
unknown ones are applied, satisfying the corresponding 
plasticity conditions for thin shells [12]. 

c�

k

k
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Refer the median surface of the shell under 
consideration to the Cartesian coordinate system . 
Besides, we introduce a local coordinate system  

 on each crack, the origin of which is the center of a fictitious crack and the axis 
 is directed along the crack line. We denote the coordinates of the crack centers in the 

reference coordinate system  by  and the angles between the axes  and  by 

X O

m mX O

m mO X
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m mO X

m

 
 

Fig. 1 
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)XOY 0 0,m mX Y( OX
� . The length of each real surface crack is denoted by  and that of a fictitious through crack by 

. In addition, , where ,  are the lengths of plastic zones near the left and 
right tip of the th crack. 
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Consider first an infinite spherical shell with one plane-linear fictitious through crack l . 
Denote the components of forces and moments arising in the shell with a crack under given loading 
and under certain boundary conditions by 

� �1
m

1 1 1 1 1,  ,  ,  ,  r r r r rN S M H Q

const� �

0 0 0,  ,  r r r

 with normal and shear forces, 
bending and twisting moments and cross-resultants, respectively, acting in the normal cross-
sections of the shell  or . The components of forces and moments of 
the basic stressed state caused by the same loading and under the same boundary conditions in the 
shell without a crack are denoted by 

constmr X� � mr Y

0 0,  ,  r rN S M H Q , respectively. Then, taking into account 
the problem linearity, the forces and moments in the shell with a crack can be given in the form of 
the sum:  

1 0 ,     ,  ,  ,  ,  r r rG G G G N S M H Q� � � { } , 

where  are the components of the perturbed stressed state caused by a crack. These components 
characterize the stress concentration near a crack. 

rG

Since the faces of real crack and, hence, that of fictitious one are also loaded by self-equilibrated 
forces and moments, then the following conditions for the components of the perturbed stressed 
state  

,0 ,0 ( ),  1,2,3, 4i m i m im mP x P x f x i� 	� � �( ) ( )  (1) 

should be satisfied at the crack contour . Here  1
ml
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the indices “0”  and “1”  denote the components of the basic stressed state and stressed state of the 
shell with a crack, respectively; the signs “+” and “�” denote the boundary values of the function 
on the faces  and ; 0mY � 0mY 	 (2)P , (3)P  are the unknown forces and moments in plastic zones at 
the crack continuation along the coordinate  satisfying the corresponding plasticity conditions of 
thin shells; 

mX
(4)

iP  are the forces and moments in plastic zone under the crack (Fig.1); ,  are the 
Kirchhoff generalized shear forces and cross-resultants [13]. 

*
21S *

2Q

For the case of loading symmetric about the crack, we assume that in the plastic region under the 
crack, i.e. in the region ,  (m mX l� � ; 2 mh h d� 	 	� � �  is the coordinate normal to the median 

surface) constant stresses  act, where ,  are the integral characteristic of 
the yield threshold and the strength limit of FGM in the interval . Then the 
material response to the break of inner bonds in the plastic zone under the crack is defined as 

0� � 1 1( ) / 2B T� �� 1T� 1B�
� ; 2 mh h d� 	 	� �

02( )lN h d� 	 � ;    ;    . (2) 02 ( )lM d h d� � 	 � * *
21 2 0S Q� �

Basic relations of thickness-inhomogeneous spherical shell with a crack 
The elasticity modulus E  and Poisson’s ratio �  are the functions of the coordinate �  normal to the 
median surface 

( )E E� � ; ( )�� � � . (3) 

The generalized Hooke law and Love hypothesis hold true [13]. The system of key equations for 
the stress functions ( , )m mx y�  and flexure function , obtained on the basis of the 
distortions method for thin shells [14], reads: 

( , )m mw x y

� � � �
2 2 2 2 2 022

12 21 1

1 ( , )m m

m m

dB w w F x y
Rl l

� � � � � 	 � � 	� ;  

� � � �
2 2 2 2 2 022

22 21 1
( , )m m

m m

w A
Rl l

� � 	 � � � � � 	� �1dA F x y

�0

0

;  (4) 

where ; � � � � �0 2 0 0 0 2 0 0 0 0 0
1 22 22 11 11 22 11 22 12 11 22 1 2 12 12 12( , ) ( ) 2m mF x y d d d d� � � � �� 	 � 	 	� � �� � � � � � � � �

� � � �0 2 0 0 2 0 0
2 11 22 2 11 22 1 2 12( , ) (1 )[ 2 ]m mF x y � � 	 	 	 � 	 	 � �� �� � � � �

� �
;  

11 11 11 12 12d C K C K� 	 � ;   � �22 11 12 12 11d C K C K� 	 � ;   12 66 66d K C� ;   ;  

;   

2 2
11 12C C� � 	

0
11 11A D D� 	 11B C� � ;   1 1A A�� ;   ;   0

21 12 1A D D� 	 0
11 11 11 12 22D K d K d� � ; 
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1 2� �� �� 1 mx� � � � ; 

 2 my� � � � 1
m mmx X� l ; 1

m m my Y l� ; 

� �( )v x 2 ( ), � �x�  are the jumps of displacements and rotation angle;  is the Dirac delta function; ( )y�
R  is the radius of the shell median surface. 

1mx �For the shell under consideration with a crack ,  the distortion field [14] charac-
terizing the jumps of displacements and rotation angle on the line of th crack has the following  
form: 
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1, 0) ( , 0)m m mx x x� 	� � 	 	 �$ l � � 1( ) 0m mx$ $ � , mx x l� � %$ ; & ', , , ,m m m mu v w�$ � ; , 

,  are the components of the generalized displacements of the shell median surface. 
mu

mv mw
The components of the stressed state of the shell are defined by the key functions ( , )m mx y� , 

 using the formulas ( , )m my
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If we introduce the complex stress function � �,m mx y/  in the form [15] 

� � � � �, ,m m m m m m �,x y w x y i B A x y/ � � � , (7) 

a system of differential equations (4) is reduced to a key equation: 

� � � � �2 2 2 2 2 2 0 0
1 1 1 2, ( , ) (m m m m m m �, )s x y R s F x y i ABF x y� � 	 / � 	 	0 0 , (8) 
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where � �2 2 2
1 1 ( )ABl R AB C� �0 ; 2s C AB i� � ; ; 22C d� 1i � 	 . 

Using the Fourier integral transform [16] the fundamental solution � �,m m0 x y/  of equation 

� � � � � � �2 2 2 2 2 2
1 0 1,m m m m �s x y s x y� � 	 / �0 0 � �  

is obtained in the form 

� � � �0 0 1, lnm m m mx y K s r r1/ � 	 	2 (2 )340 5 , (9) 

where ; 2 2 2
m m mr x y� � � �0K z  is the Macdonald function.  

Integral equations of the problem 
On the basis of formula (9), the right-hand side of equation (8) and the convolution operation, we 
obtain the expressions for � ,m m �x y/  and then, taking into account Eq. (7), the key functions 

� �,m mx y�  and  � �,m mw x y

� � � � � � � �& '
1

2
1

( , ) , ,
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5

�, � , (10) 

where ; ; � �1( , ) ,m m m mq x y w x y� � �2 ( , ) ,m m m mq x y x y�� 1 1 5f f/ � � , 2 2 6f f/ � � ; 
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8 2
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� � � � � �1 0 1 0 1i K s K s� � 	 	1 32 48 0 7 0 7 ;  � � � � � �2 0 1 0 1K s K� �8 0 7 s� 0 2 2 27 m; z y� �7 ;    

mz x� 	6 ;   a C AB� ; s a i� 	 ;    2
1 1c R� 0 ;   2 1c c A B� . 

Substituting the relations (10) into (6) we obtain the integral representations of forces and 
moments 1 2 1 2 1 2, , ,  , ,  ,  ,m m m m m m m mN N S M M H Q N  at an arbitrary point of the shell caused by the 
jumps of displacements and rotation angles along the fictitious crack . With these expressions, the 
forces and moments at an arbitrary cross-section forming some angle 

1
ml

( )nm nm n m� 	� � � �  with the 
line of the th crack are defined by formulas m

2 2
1 2sin cos sin 2nm m nm m nm m nmN N N S� � 	� � � ;  

2 1
1 ( )sin 2 cos 2
2nm m m nm m nmS N N S� 	 �� � ;  

2 2
1 2sin cos sinnm m nm m nm mM M M H� � 	 2 nm� � � ;  
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2 1( ) sin 2 cos
2nm m m nm m nmH M M H� 	 �1 2� � ;  

1 2nm m nm m nmsin cosQ Q Q� 	 �� �

m

. (11) 

On the basis of formulas (11), (10) and (6), we define the forces and moments on the line of n th 
crack  caused by the jumps of displacements and rotation angles at the crack  using the relation 
between the local coordinate systems  

1
ml

0 0 0 0( ) cos ( )sm n m m n mx x x y y� 	 � 	

1
nl

in cos sinm n nm n nx y� 	� � � �

.m

; 

0 0 0 0( ) cos (m n m m ny y y x x� 	 	 	 )sin sin cosm m n nm n nx y� � �  � � �

If we sum the forces and moments on the line of  n th crack caused by the jumps of 
displacements and rotation angles of each of  cracks and demand that those sums satisfy the given 
conditions (1) at the crack , then we obtain a system of four integral equations in  unknown 
functions. Having constructed such equations for each of k  cracks we obtain a system of  
singular integral equations to define 4  unknown functions characterizing the jumps of 
displacements and rotation angles along these cracks. 

k
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This system reads 
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	=
; 

( , )j
nm nK s x  are continuous functions for the whole set of real values s , nx ;  are the given 

constant values;  are the integration constants. 
ind

nC
The solutions to the system (12) should satisfy the conditions: 

1
1 ( ) 0 ( 1,2,3, 4)

n

n
l

s ds i� ��$ ; 
1

4 ( ) 0, ( 1,..., )
n

n
l

s dsds n k� ���$ ,  (13) 

ensuring the uniqueness of displacements and angles of rotation at the tips of fictitious cracks. 
Note that in the system of integral equations (12) the limits of integration are unknown, since the 

sizes of plastic zones are unknown, and, hence, the lengths of fictitious cracks are unknown too. 
Besides, the functions ( )in nf x�  contain the unknowns ( ) ( ) ( ) ( ), , ,

m m m m

i i i iN S M Q

( ) ( ), ,
m m

i i

 ( ) acting at the faces 
of fictitious cracks as response of plastic zones to the shell elastic material. Hence, the system (12) 
should be supplemented by some additional conditions in order to construct the solution. It would 
appear natural that the plasticity conditions and conditions of the stress boundedness in plastic zone 
(near the tips of fictitious cracks) are the conditions which 

2,3i �

( ) ( ),
m

i
m

iN S M Q  ( ) should 
satisfy. 

2,3i �
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The solution of system (12) is constructed using the generalization of a variant (proposed earlier 
[17]) of the method of mechanical quadratures for solving one equation. The functions ( )in nf x�  
contained in the right-hand sides of system (12) have discontinuities at points ns x��  ( nx�  are the 
coordinates of the tip of the real crack). Comparison of analytic solutions of the system of canonical 
singular equations corresponding to the system (12) ( ) with the corresponding 
solutions obtained using the method of mechanical quadratures has shown that application of this 
method directly to the systems with discontinuous right-hand sides leads to substantial errors in the 
solution in the vicinity of points 

( , ) 0j
nm nK s x �

ns x�� , where the behavior of the solution is of great interest. 
Therefore, when constructing the solutions to the systems of type (12), the method proposed for one 
equation of analogous type in [18] is applied. For this purpose the unknown functions jm$  are given 
in the form of the sum 

( ) ( ) ( )jm jm jms h s F s� �$ . (14) 

Here  is the solution to a canonical system of equations ( )jmh s

1

1( ) ( ),
n

in
i in n n n

nl

h s ds d f x x l
s x

�� �
	�    (15) ( 1,..., ; 1,2,3, 4)n k i� �

obtained using the Cauchy-type inversion formulas [11] and satisfying the conditions of Eq. (13) 
type. Substituting (14) into (12) and accounting for (15), we obtain a system of singular integral 
equations for ( )jmF s . The system obtained is of the form (12) but with continuous right-hand sides. 

As an example, we consider the limit equilibrium of thickness-inhomogeneous spherical shell 
weakened by four cracks of the same length  and depth  equidistant from the origin of 

coordinates 
02l 02d

xoy . The cracks form the angles , 2 / (k n� 	� 5 1)n 1, 4n � ,  with the axis . 
Let the shell be under internal pressure of intensity 

4k � ox
p . The crack faces are load-free (  1( ) 0i mP x �

( 1,4)i � ). Among the components of the basic stressed state only 0
2 / 2N qR�  are different from 

zero. Then all the cracks are under equal conditions. The unknown zones of plastic strains near all 
the cracks are the same and are equal to  near the closer (to the origin of coordinates) crack tips 
and to  near the remote ones. Among the forces and moments acting in the plastic zone, 

(2)l
(3)l

(3), ,(2) (3),(2)N N M M  are different from zero. Therefore, from system (12) we obtain a system of 
two singular integral equations to find the unknown jumps of displacement  and rotation angle : v 2�

12
*

1 1
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1
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0 2

1
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d  is the distance from the center of fictitious crack to the origin of coordinates. 
The solution to the system obtained is sought in the form (14), whereas the solution of the 

system of integral equations for functions  is found using the method of 
mechanical quadratures [17]. This system is solved together with boundedness conditions for 
normal force and bending moment near the crack tips; for this purpose it suffices that corresponding 
stress intensity factors at the fictitious crack tips are equal to zero, i.e. 

( ) ( 1, 2; 1)jmF s j m� �

(2)
2 3)N NK d l� 	 (2)

2 3( ) ( ) ( )M MK d K d l� � 	(K d . (17) 

The Tresca plasticity conditions in the form of a plastic hinge  

2 ( )( )

2 1
2

ii

T T

MN
h h

) *
� �+ ,

- .� �
,     , (18) 2,3i �

or plasticity condition of a surface layer 

( )( )

2

3
1

2 2

ii

T T

MN
h h

� �
� �

,      (19) 2,3i �

are employed. 
In relations (17)-(19) the following notations are used:  is the distance from the point of origin  

to the nearest tip of fictitious crack; ; ;  is the yield 
limit of the shell material. In the plasticity conditions (18), (19) it is assumed that 

2d

02 )l(2)
2 (d d l� 	 � (3) / 2l � (2)

3 2 2d d l l� � � 0 T�
( )iN const� , 

( )iM const� , i.e. that the shell material is ideally elasto-plastic. If hardening of shell material is 
taken into account, then we assume that ( )iN  and ( )iM  in the plastic zones  vary 
according to the linear law. So, for example, in plastic zones in the vicinity of the tips of the right 
crack ( ) the forces 

( )il i( 2,3)�

0n �� ( )iN  and moments ( )iM  ( ) take the form 2,3�i

(2) * (2)
2( ) ( ) ( 1) 1N x P x d m l1 3� 	 	 �2 4 ;   (3) * (3) *

3( ) ( ) (1 )N x P x d m l m1 3� 	 	 �2 4 ,  
(2) * (2)

2( ) ( ) ( 1) 1M x H x d m l1 3� 	 	 �2 4 ;   (3) * (3) *
3( ) ( ) (1 )M x H x d m l m1 3� 	 	 �2 4 , (20) 
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where ;  is the strength limit of the shell material ; * /� Tm �� � �� ,P H  are the unknown constants 
which have to satisfy the given plasticity condition, e.g. the condition of a plastic hinge 

2( ) 2 ( )(2 ) ( ) 1i iP h H h1 3 � � 2,3i � .2 4� � ,  (21) 

Then 

( ) ( )

( ) 2 ( )

( ) ( ) 1
2 ( )

i i

i i

N x M x
h x h

� �
� �

,  (22) 2,3i �

(2) (2)
2( ) ( ) ( )� �x x d l� 	 	 �� � � �� ;   (3) (3)

3( ) ( ) ( )� �x x d l� 	 	 �� � � �� . 

The method of mechanical quadratures reduces the solution of the system of singular integral 
equations to a system of algebraic equations. It should be noted that the unknown sizes of plastic 
strain zone enter into the system of algebric equations nonlinearly. Therefore, the algorithm of 
solution is as follows. Having assigned in a certain way  and , we solve the system of linear 
algebraic equations. Using (17) we find 

(2)l (3)l
( )iN , ( )iM , i  and verify the plasticity conditions (18), 

(19) or (20)-(22). If they are satisfied with the preassigned accuracy, then the problem is solved. In 
the opposite case we change  and  and the procedure is repeated.  

2,3�

(2)l (3l )

Integrating the obtained solution to the system of integral equations, the crack opening  
at its arbitrary point is defined by the formula 

( , )mx� �

2( , ) [ ( )] [ ( )]m m mx v x x� �� � � � . 

Numerical analysis 
Numerical analysis is carried out for a spherical shell with such parameters ; / 0,0h R � 1 0,3�� ; 

; ; ; ; / 1,B T �� � 5 0 / 0,d h � 5 ,0 / 1l h � 0 1 / 1T T �� � 3 0
2 2N Rp� , . The shell is made of 

FGM, the outer surface of which is aluminum ( GPa) and the inner one is germanium 
( GPa). The elasticity modulus 

0
2 0M �

70��E
( )E151BE � �  varies along �  according to the law [6] 

( ) ( )� � �E E E V E� 	 �� , 1
2

m

V , ) *� �+ ,- .
6 � �2h�6 � ;    ( ) const�� � . (23) 

Fig. 2 shows the relative crack opening  at the 
point 

*
0/( )TE l�� � �

B  vs. the parameter  (Fig. 1). The curves 1 and 2 
correspond to the relative loading  and . 
The solid lines correspond to the crack tips located nearer to the 
origin of coordinates and the dashed lines correspond to the 
remote tips. The crack opening has also been defined at the 
point . Its dependence on 

0 /l d�7
/ Tp � 0.008� 0.012

A 7  has analogous nature, but the 
value is greater by 20 %. 

It follows from the graphs that the beginning of interaction 
between four cracks located symmetrically in a spherical shell 
depends both on the crack length (or distance  between them) 

and on the level of internal pressure 
d

p . In particular, for  the interaction starts at 0.008 Tp � �
0.25�7  and for  at 0.012 Tp � � 0.2�7 . At the beginning of interaction, as in the case of 

 
Fig. 2. 
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homogeneous shell with two through 
cracks [10], the opening of the crack 
tips nearer to the origin of coordinates 
decreases slightly.  Next, when cracks 
approach, it increases rapidly. The 
results obtained using the plasticity 
conditions (18) or (19) differ not more 
than by 5 %. Taking into account 
hardening of shell material (conditions 
(20)-(22)) causes the decrease of the 
crack tips opening. For example, for 

 at * 1, 2m � 0,5�7  the crack opening 
has decreased by 10 % and for , * 1,5�

  
Fig. 3.  

m 0,5�7  by 14 %. 
Fig. 3a presents the relative crack front opening  at the point  vs. relative loading 

, and Fig. 3b shows the relative length of plastic strips near the crack tip 

*� A
0 /(4 )Tn Rp h� � 0 0l l�? 1  

vs. . Calculations have been made for 0n 0,15�7  with other parameters being the same as in     
Fig. 2. The solid lines correspond to the plasticity condition (18), and the dashed ones correspond to 
conditions to (20)-(22) for . Numerical results obtained for conditions (18) differ  less by    
3 % than those for condition (19). 

*m �1,5

(E

Conclusion 
If critical opening of the crack front is taken as the fracture criterion, then for the considered 
loading, geometric and mechanical parameters fracture of a spherical shell made of FGM weakened 
by surface cracks will start at the crack depth continuation extension, i.e. at the point . The law of 
distribution of the elasticity modulus 

A
)�  along the shell thickness influences insignificantly its 

limit equilibrium, in contrast to the ratio /� �� �

niuta An ap
couples

iversity of T

. The plasticity condition influences insignificantly 
the surface crack faces opening and the length of plastic strips near their tips. 
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