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Simulation of failure in porous elastic solids incorporating size effects 

Uwe Mühlich1a, Lutz Zybell2b and Meinhard Kuna3c

123TU-Bergakademie Freiberg, IMFD, Lampadiusstrasse 4, Freiberg 09599, Germany 
aUwe.Muehlich@imfd.tu-freiberg.de, bLutz.Zybell@imfd.tu-freiberg.de,

cMeinhard.Kuna@imfd.tu-freiberg.de

Keywords: strain gradient elasticity, homogenization, size effect, failure 

Abstract. A first order strain gradient elasticity model in conjunction with a simple failure criterion 
is employed in order to discuss size effects in failure of porous elastic materials. The model 
contains two micro structural parameters: namely the void volume fraction f and the mean of the 
half void spacing R. Three different examples: a plate with a hole under remote uniaxial and biaxial 
tension and a compression test using a long cylindrical bar are considered. The numerical 
simulations were performed varying f and R in order to investigate the influence of different 
microstructural dimensions on the onset of macroscopic failure. A size effect can be observed 
where the results indicate that this size effect does not only depend on the ratio between 
macroscopic and microstructural dimensions but also on the macroscopic geometry and loading 
conditions.

Introduction
Size effects in failure of porous elastic solids are evidenced by a large number of experimental 
studies. These investigations always indicate a certain relationship between the failure load and the 
ratio between the macroscopic and microstructural dimensions like e.g. grain size, defect spacing, 
etc. of the considered body, where the microstructural dimensions are determined by the material. A 
detailed discussion would go beyond the scope of this paper. Therefore, we refer without appraisal 
only to [1-3]. 

In order to apply a continuous description at the macrolevel which accounts to a certain extent 
for the influence of the materials microstructure, homogenization methods based on the concept of 
the representative volume element (RVE) have been developed within the scope of classical 
continuum mechanics,  i.e. within the framework of the theory of simple materials.  However, since 
only specific values enter the resulting models, size effects cannot be reproduced. With respect to 
the class of materials considered here, this means that these continuum models cannot distinguish 
between a material with many small micro-voids and another material with less but bigger micro-
voids as long as the specific void volume fraction is the same.  

On the other hand, a first order strain gradient elasticity theory was developed by Mindlin [4,5] 
based on an earlier contribution of Toupin [6]. Due to the presence of the strain gradients, 
additional length parameters appear and therefore size effects can be reproduced. Furthermore, 
continuum models fitting into Mindlin's framework can be transparently obtained by higher order 
homogenization, i.e. homogenization with more complex conditions prescribed at the outer 
boundary of the RVE. 
In this paper, materials whose micro structure is characterized by long cylindrical voids surrounded 
by linear elastic matrix material are considered. First order strain gradient theory is applied where 
the constitutive equations have been derived by Zybell et al. in [7] by employing the higher order 
homogenization procedure proposed by Gologanu [8] and further investigated by Forest [9].  The 
only microstructural parameters of the model are the void volume fraction f and the mean of the half 
void spacing R. A simple failure criterion based on the hoop stress at the boundary of the micro-
voids has been derived. The strain gradient model has been implemented into the commercial finite-
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element program ABAQUS [10] using a mixed formulation as proposed by Shu et al. [11]. The 
implementation is described in detail in Zybell [12].   
Numerical simulations were performed considering two different macroscopic geometries and 
varying f and R in order to investigate the influence of different microstructural dimensions on the 
onset of macroscopic failure.   

The paper is organized as follows. The following section considers briefly the essentials of the 
strain gradient theory developed in [4,5]. The homogenization procedure and the failure criteria are 
outlined. In the second part, the geometry and loading conditions of the considered examples are 
described and the results obtained by the numerical simulations are presented. Finally, some 
perspectives for further developments are given. 

In the sequel, index notation together with the summation convention is used and capital letters 
represent macroscopic variables. Macroscopic and microscopic variables depend on the 
macroscopic coordinates Xi and the microscopic coordinates xi, respectively. The abbreviation (),i
indicates the partial derivative of the considered quantity () with respect to the corresponding 
spatial coordinate. 

Strain gradient elasticity
Strain gradient elasticity may be formulated by the following set of equations for the 

macroscopic field variables 

Equilibrium conditions: 

(�ij,j-Mijk,k),j=0 (1) 

Kinematic relations: 

Eij= ½ (Ui,j +Uj,i) (2) 

Hijk= ½ (Ui,jk +Uj,ik) (3) 

Constitutive relations:

�ij= Cijkl Ekl (4)

Mijk= Dijklmn Hlmn (5)

for all macroscopic points X of the considered body B, where Ui are the components of the 
displacement vector. The stresses �ij and the higher order stresses Mijk are related to their work 
conjugate kinematic variables, the strains Eij and the strain gradients Hijk, by the fourth and sixth 
order tensors C and D, respectively. The boundary value problem at the macro level is completely 
defined if in addition to Eq. 1 – Eq. 5 the following natural boundary conditions

Ti=Ti
*           X �BT (6) 

Ri=0i         X �BR (7)

as well as the essential boundary conditions 
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Ui=Ui
*        X �BU (8) 

Np Ui,p = Vi
*  X �BV (9)

are taken into account, where variables marked with an asterisk (*) indicate prescribed values. In 
general, higher order tractions different from zero could be prescribed at the boundary �BR.
However, in view of the applications for which the model will be used, this case is excluded here as 
indicated by Eq. 7. The surface tractions Ti and the higher order surface tractions Ri are given by 

Ti=Nj (�ij-Mkji,k)-Dj(Nk Mkji) + (Dl Nl) Nk Nj Mkji (10)

Ri=Nk Nj Mkji , (11)

where Ni and Di are the components of the unit normal vector and the surface gradient, respectively. 
The model has been implemented into the finite element program ABAQUS using a mixed 
formulation. However, following [Shu et al.] an equivalent formulation based on the second 
gradients of the displacements was used for the implementation instead of the model given by 
Eq. 1– Eq. 5.

Constitutive equations for plane porous strain gradient elasticity 
The components of the constitutive tensors C and D have been determined by higher order 
homogenization, where C corresponds to the overall elasticity tensor of the theory of simple 
materials. The homogenization has been performed considering a cylindrical volume element 
(RVE) which consists of a cylindrical void surrounded by linear elastic matrix material as shown in 
Fig. 1. Plane stress and plane strain conditions have been assumed and quadratic boundary 
displacements related to the macroscopic strains and strain gradients have been prescribed at the 
outer boundary of the RVE. 

ui (r=R,�) = Eik xk + ½ Kijk xj xk – ½ (Kijk + Kjki) Xk xj (12)

with

Kijk= Hijk - Hijk  + Hkij . (13)

 Figure 1: Representative Volume Element (RVE) for the homogenization procedure 
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At the inner boundary, the tractions must vanish 

�ij(r=a,�)nj = 0i . (14) 

The boundary value problem for the RVE was solved analytically using Airy’s-Stress function in 
conjunction with Fourier series in order to derive the microscopic stresses �ij and strains �ij inside 
the RVE as functions of the macroscopic strains and strain gradients, respectively, from which the 
components of C and D can be determined. More detailed information is given in [7].  

The components of C and D depend on the void volume fraction f and the elasticity constants of 
the matrix material E and �. The components of D, however, depend as well on the mean of the half 
void spacing R.

After solving the boundary value problem at the macro level, the macroscopic strains and strain 
gradients are known for every macroscopic point X. Furthermore, the microscopic stress and strain 
fields inside the corresponding RVE are known as well. In order to obtain a failure criterion, it is 
postulated that failure occurs if the hoop stress at the micro-void, ��� (r=a,�), reaches a critical 
value.  This assumption includes actually two failure criteria. Failure by tension occurs if the 
maximum positive hoop stress ���

max+ reaches a critical value and failure by compression takes 
place if the minimum negative hoop stress ���

max- becomes lower than or equal to a critical value. 
Both criteria are used in the following in order to predict the onset of failure of  porous elastic 
solids.

Numerical Examples 
First, a cylindrical hole surrounded by a linear elastic strain gradient material under remote uniaxial 
tension in plane strain is considered.

Figure 3: ���
max+/�0 for biaxial remote tension as function of the arc length s, varying f and R/�
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Due to the symmetry of the problem, only a quarter of the geometry has to be modeled as shown in 
the lower right picture of Fig. 3.

With respect to the elasticity constants E and �, the values E=1000 MPa and �=0.3 were used for 
all calculations. However, different materials microstructures characterized by the void volume 
fraction f and the half void spacing R were considered. The values for the void volume fraction f
were taken from the set (0.001, 0.010, 0.1, 0.150, 0.250) and the ratios between the half spacing of 
the microscopic voids R and the radius of the macroscopic hole � were chosen equal to R/	� =0.01, 
0.1 and 0.15.

For a given void volume fraction f, small and large values for R/	� reflect micro structures with 
many small voids and micro structures  with less but bigger voids, respectively.  

The results for ���
max+ along the boundary of the macroscopic hole are shown in Fig. 3 as 

functions of the arc length s for different micro structures. As it can be seen, ���
max+/� 0 decreases 

as R/	� increases and in addition the curves become smoother with increasing R/	�. Therefore, the 
failure criterion predicts that the onset of failure occurs at lower applied loads if the material has a 
dense micro structure (R/	��small), compared with the case of a coarse micro structure 
(R/	��large).  Similar results were obtained for ���

max-.
Furthermore, the problem of a cylindrical hole in plane strain under uniaxial remote tension has 

been investigated. The same material parameters used for the example discussed above were taken 
and the results for ���

max+/	� 0 are shown in Fig. 4.

Figure 4: ���
max+/	� 0 for uniaxial tension as function of the arc length s, varying f and R/	�	
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Again, it turns out that for a given void volume fraction a coarse micro structure is more strength 
than a dense micro structure. The maximum values for ���

max+/�0 and |	���
max-|/�0 are shown for all 

performed simulations in  Fig. 5, where the results for biaxial and uniaxial remote tension are found 
on the left hand and on the right hand side, respectively..

Figure 5: Maximum values for ���
max+/�0 and |���

max-|/�0   for biaxial and uniaxial remote 
tension

As a third example, a compression test performed with a long cylindrical bar is considered. The 
experimental setup is shown together with the finite element mesh used for all calculations in 
Fig. 6. Plane strain conditions were assumed and the simulations were performed using contact in 
conjunction with friction and small sliding. The same values as used before were taken for E and �.
The void volume fractions f were taken from the set (0.001, 0.01, 0.1). Here, � is the radius of the 
cylindrical bar as depicted in Fig. 6 and for the ratios between the half spacing of the micro-voids 
and ��the values 0.001, 0.1 and 0.1 were chosen. These values correspond to micro structures with 
approximately 500, 250 and 50 micro-voids, respectively, along the radius of the cylinder.  

Figure 6: Compression test: experimental setup, finite element discretization and distributions of 
���

max+ and ���
max-   for f=0.01 and R/	� =0.01 
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The failure criteria have been evaluated and the results for ���
max+/F and ���

max-/F are shown 
for all performed simulations in Fig. 7, where F is the applied load as shown in Fig. 6. Surprisingly, 
the failure criteria predict that the lower the values for R/	�	 the more strength the considered 
structure has, which is contrary to the results obtained for the plate with hole under remote tension. 

Figure 7: Maximum values for ���
max+/	� 0 and |���

max-|/	� 0   obtained for the compression test 

Summary and Outlook 
Strain gradient theory has been applied in order to simulate size effects in the failure of structures 
consisting of porous elastic materials. The results obtained for the considered examples indicate 
that size effects in failure depend not only on the micro structural properties but also on the 
macroscopic geometry and loading conditions. The failure criteria used here were chosen without 
experimental background and therefore more or less arbitrarily based on the maximum hoop stress 
at the micro-voids. It was shown that size effects can be reflected in principle. However, other 
criteria based on maximum shear stress inside the RVE or energetic criteria may be formulated as 
easily and further investigations in conjunction with corresponding experiments are necessary in 
order to validate the approach. 

Furthermore, testing of porous elastic materials like e.g. aircrete is performed mostly by means 
of compression tests with cubes. However, without variations of the microstructural properties 
throughout the considered specimen, size effects could not be predicted by the approach presented 
here because of the absence of gradients in the macroscopic fields. Therefore, the strain gradient 
model has to be combined with a statistical approach, accounting this way for variations of the 
microstructure in the specimens.  
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