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Abstract. Continuum damage mechanics provides an appropriate modeling framework for materials
weakened by evolving defects such as cracks or voids. However, local damage models fail to provide
an objective description of the material behavior after the loss of ellipticity, which can be detected by
classical methods of localization analysis based on the acoustic tensor. This paper presents a careful
analysis of localization properties of a class of isotropic damage models with one damage variable
and with different definitions of the damage-driving equivalent strain. The necessary conditions for an
incipient weak discontinuity under plane stress are compared, discussed, and illustrated by numerical
examples.

Introduction

Realistic description of the mechanical behavior of quasibrittle materials such as concrete requires
constitutive laws with softening. The physical origin of softening is in the propagation and coales-
cence of defects such as voids or cracks. It is well known that softening may lead to localization
of inelastic strain into narrow process zones. For traditional models formulated within the classical
framework of continuum mechanics, such zones have an arbitrarily small thickness, and failure can
occur at arbitrarily small energy dissipation, which is not realistic. The mathematical model becomes
ill-posed and the numerical solutions suffer by pathological sensitivity to the discretization parameter,
e.g. to the size of finite elements. It is therefore important to clearly understand the conditions under
which localization may occur, and to limit the application of traditional continuum damage mechanics
to the range of material states that do not allow for localization of damage into arbitrarily thin bands.
Beyond this range, special enhancements acting as localization limiters are necessary.
From the mathematical point of view, the onset of localization can be characterized as the appear-

ance of a discontinuity in the strain rate, which later develops into a discontinuity in the strain itself.
In one dimension, such a discontinuity can appear only if the tangent stiffness ceases to be positive.
This means that localization is closely related to softening. In multiple dimensions, the relation be-
tween localization and softening is less straightforward. Localization may occur even in the hardening
regime due to other destabilizing effects such as non-associated format of the evolution equations for
internal variables (e.g. non-associated flow rule in plasticity). The localization conditions also depend
on the specific stress state, and certain types of loading may delay the onset of localization far beyond
the peak of the stress-strain diagram.
The purpose of this paper is to explore in detail the conditions that must be satisfied at the onset of

localization for isotropic damage models with a single scalar damage variable. This is the basic class
of damage models, which has well-known deficiencies but due to its simplicity is frequently used in
numerical simulations.
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Localization condition in general form

The fundamental question addressed here is under which conditions the inelastic strain increments
can localize in one or more narrow bands separated from the remaining part of the body by weak
discontinuity surfaces. Across such surfaces, the displacement field remains continuous but the strain
field can have a jump. At the onset of localization, the current strains are still continuous and the
jump appears only in the strain rates. The necessary condition for the existence of such a solution has
been established based on the classical localization analysis inspired by the early works of Hadamard
[2] and Hill [3] and developed, among others, for plasticity in [8, 6] and for damage in [7]. The
weak discontinuity can appear only if the determinant of the so-called localization tensorQ becomes
nonpositive. The localization tensor is defined as

Q = n ·D · n (1)

where D is the (tangent) stiffness tensor and n is a unit vector perpendicular to the discontinuity
surface. If, for the material state at a given point, the determinant ofQ is positive for all directions n,
all components of the strain rate must remain continuous at that point. The formation of a band with
localized strain can thus begin only if there exists a certain direction n for which det Q ≤ 0. If the
tangent stiffness evolves continuously, this condition is first satisfied when

det Q = 0 (2)

for some direction n. From the mathematical point of view, singularity of the localization tensor
indicates the so-called loss of ellipticity.

Isotropic damage models

The localization condition presented in the previous section is fairly general. For specific constitutive
models, its particular form can be constructed by substituting the appropriate expression for the tan-
gent stiffness tensor. In this paper, we will consider the class of isotropic damage models with one
scalar damage variable ω, described by the stress-strain law

σ = (1− ω)De : ε (3)

damage law

ω = g(κ) (4)

and loading-unloading conditions

f(ε, κ) ≡ εeq(ε)− κ ≤ 0, κ̇ ≥ 0, f(ε, κ) κ̇ = 0 (5)

in which f is the damage loading function, g is the damage evolution function, εeq is a scalar measure
of the strain level called the equivalent strain, and κ is an internal variable that corresponds to the
maximum level of equivalent strain ever reached in the previous history of the material. The choice
of the specific expression for the equivalent strain directly affects the shape of the elastic domain in
the strain space and, as will be shown in Section , also the localization properties of the model.
From the rate form of the basic equations it is easy to derive the (elastic-damaged) tangent stiffness

tensor

Ded = (1− ω)De − g′σ̄ ⊗ η (6)
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Here,Du = (1−ω)De is the unloading stiffness, g′ = dg/dκ is the derivative of the damage function
g, σ̄ = De : ε is the effective stress, and η = ∂εeq/∂ε is a second order tensor obtained by differ-
entiation of the expression for equivalent strain with respect to the strain tensor. The corresponding
localization tensor is evaluated as

Qed = (1− ω)Qe − g′(n · σ̄)⊗ (η · n) = Qu − g′σ̄n ⊗ ηn (7)

where σ̄n = n · σ̄ is the effective traction vector on the potential discontinuity plane, ηn = η ·n is the
projection of tensor η on that plane, andQu = n ·Du ·n = (1−ω)n ·De ·n = (1−ω)Qe is a scalar
multiple of the elastic acoustic tensorQe = n·De ·n = n·(λδ ⊗ δ + 2μIs)·n = (λ+μ)n⊗n+μδ,
in which λ and μ are Lamé’s coefficients. As shown for instance in [4], the localization tensorQed is
singular if and only if

g′ηn ·Q−1
u · σ̄n = 1 (8)

The product ηn ·Q−1
u · σ̄n depends on the elastic constants, on the current state of the material and on

the assumed direction of discontinuity plane. For a given material state, it is continuous as a function
of the unit vector n and has a maximum with respect to n. Variable g′ (the derivative of the damage
function with respect to the equivalent strain) indicates how “dramatically” damage evolves. If g′ is
sufficiently small, condition (8) is not satisfied for anyn and discontinuous bifurcations are excluded.
The minimum value of g′ that is needed for the loss of ellipticity is

g′crit =
1

max
‖n‖=1

(
ηn ·Q−1

u · σ̄n

) (9)

If g′ < g′crit, the localization tensor Qed is regular for all possible directions n, and a discontinuity
in the strain rate is excluded. If g′ = g′crit, the localization tensor Qed is singular for that particular
direction n which maximizes ηn ·Q−1

u · σ̄n, and a discontinuity across a plane perpendicular to that
direction can start evolving. Finally, if g′ > g′crit, there exist infinitely many directions n for which
Qed is singular, and the discontinuity can evolve even “more easily”.

Localization analysis in one dimension

To get more insight into the meaning of the critical value of g′, let us reduce the results derived so
far to the simplest case of a one-dimensional damage model. All tensors become scalars, the elastic
stiffness tensor De is replaced by Young’s modulus E, the equivalent strain εeq is the strain ε itself
(we consider monotonic tensile loading), and tensor η is replaced by the scalar η = dεeq/dε = 1.
The unit normal vector n is also replaced by the scalar n = 1, and so there is no difference between
the localization tensor and the tangent stiffness. Realizing that the effective stress is σ̄ = Eε and
substituting into (6) we get the tangent stiffness

Eed = Eu − g′σ̄η = (1− ω)E − g′Eε = E(1− ω − g′ε) (10)

The localization condition det Qed = 0 is now written as Eed = 0, which means that a discontinuous
bifurcation occurs when the peak of the stress-strain curve is reached. This is of course the result that
we would expect intuitively. The value of g′ corresponding to vanishing tangent stiffness Eed is

g′crit =
1− ω

ε
(11)

This is exactly what we obtain from the general formula (9) by substituting 1 for ηn, (1 − ω)E for
Qu and Eε for σ̄n.
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Localization analysis in two dimensions (plane stress conditions)

Evaluation of the critical value of g′ was, in the one-dimensional case, very easy because no max-
imization with respect to n was needed. Let us now proceed to the analysis of a two-dimensional
model under the assumptions of plane stress.
The elastic stiffness tensor for a two-dimensional plane-stress model is written as

De = 2G
(
I +

ν

1− ν
δ ⊗ δ

)
(12)

where G ≡ μ is the elastic shear modulus. The corresponding elastic acoustic tensor

Qe = n ·De · n = G
(
δ +

1 + ν

1− ν
n⊗ n

)
(13)

can easily be inverted:

Q−1
e =

1

G

(
δ − 1 + ν

2
n⊗ n

)
(14)

Note that all terms in the product ηn ·Q−1
u · σ̄n depend on the unit normal vector n. Vectors ηn

and σ̄n are respectively defined as η ·n and σ̄ ·n, where η and σ̄ are, for a given material state, fixed
symmetric second-order tensors. Since the inverse ofQu is Q−1

u = Q−1
e /(1− ω), the function to be

maximized with respect to n can be presented as

f(n) = ηn ·Q−1
u · σ̄n =

1

(1− ω)G

[
n · η · σ̄ · n− 1 + ν

2
(n · η · n)(n · σ̄ · n)

]
(15)

The principal directions of tensors σ̄ = De : ε and η = ∂εeq/∂ε are the same, and if we rewrite
the bracketed expression in (15) in terms of the components with respect to the principal coordinate
system, we obtain the fourth-order polynomial

f ∗(n1, n2) = η1σ̄1n
2
1 + η2σ̄2n

2
2 −

1 + ν

2

(
η1n

2
1 + η2n

2
2

) (
σ̄1n

2
1 + σ̄2n

2
2

)
(16)

This polynomial has to be maximized, subject to the normalizing constraint n2
1 + n2

2 = 1. Renaming
n2

1 as N1 and n2
2 as N2 = 1 − N1, we convert the objective function f into a quadratic function

of one single argument N1 and we automatically satisfy the normalizing constraint, but additional
inequality constraints 0 ≤ N1 ≤ 1 must be imposed. The coefficient multiplying the quadratic term
N2

1 is −(η1 − η2)(σ̄1 − σ̄2). Without any loss of generality, we can order the principal stresses such
that σ̄1 ≥ σ̄2. The equality sign corresponds to the special cases of equibiaxial tension or equibiaxial
compression. In all other cases, the function to be maximized is strictly concave, provided that η1 > η2

(which is usually verified for the commonly used expressions for equivalent strain). The value of N1

at which the first derivative of f ∗ vanishes is

N∗
1 =

η1σ̄1 + νη2σ̄2 − (1 + ν)(η1σ̄2 + η2σ̄1)/2

(1 + ν)(η1 − η2)(σ̄1 − σ̄2)
(17)

If N∗
1 is between 0 and 1, the unit normal to the potential discontinuity curve has coordinates n1,crit =

±√N∗
1 and n2,crit = ±√1−N∗

1 . Formally, four solutions are obtained, but only two of them repre-
sent physically different directions, which are symmetrically placed with respect to the principal axes.
If formula (17) givesN∗

1 ≥ 1, then the unit normal has components n1,crit = 1 and n2,crit = 0 and the
discontinuity is perpendicular to the major principal axis. If formula (17) givesN∗

1 ≤ 0, then the unit
normal has components n1,crit = 0 and n2,crit = 1 and the discontinuity is perpendicular to the minor
principal axis.
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In all the cases, the critical value of g′ according to (9) is given by g′crit = (1−ω)G/f ∗(n1,crit, n2,crit).
Instead of looking at g′crit, it is more instructive to assess the corresponding critical value of tangent
modulus Eed, given by

Eed,crit = E (1− ω − g′critεeq) = E

[
1− ω − (1− ω)Gεeq

f ∗(n1,crit, n2,crit)

]
= Eu

[
1− Gεeq

f ∗(n1,crit, n2,crit)

]
(18)

In general, the orientation of the potential discontinuity and the critical ratio between the tangent
and unloading moduli depend on the current state, which enters through the principal values of η and
σ̄; see (16)–(17). To illustrate the influence of the particular definition of equivalent strain on the
localization properties of the model, let us consider the following choices:

• Mazars definition of equivalent strain [5]:

εeq = ‖〈ε〉‖ =

√√√√ 3∑
I=1

〈εI〉2 (19)

η =
∂εeq

∂ε
=
〈ε〉
εeq

(20)

where εI , I = 1, 2, 3, are the principal strains, and the brackets 〈. . .〉 denote the positive part.
• Rankine-type definition of equivalent strain:

εeq =
σ̄1

E
(21)

η =
∂εeq

∂ε
=

1

E

∂σ̄1

∂σ̄
:
∂σ̄

∂ε
=

1

E
(p1 ⊗ p1) : De =

1

1 + ν

(
ν

1− 2ν
δ + p1 ⊗ p1

)
(22)

where σ̄1 is the maximum principal effective stress and p1 is the unit vector in the corresponding
principal direction.

• Modified von Mises definition of equivalent strain [1]:

εeq =
(k − 1)I1ε

2k(1− 2ν)
+

1

2k

√√√√ (k − 1)2

(1− 2ν)2
I2
1ε +

12kJ2ε

(1 + ν)2
(23)

where

I1ε = δ : ε (24)

is the first strain invariant (trace of the strain tensor),

J2ε = 1

2
e : e = 1

2
ε : ε− 1

6
I2
1ε (25)

is the second deviatoric strain invariant, and k is a model parameter controling the ratio between
the uniaxial compressive strength fc and uniaxial tensile strength ft.
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Figure 1: Localization characteristics of model with Mazars equivalent strain: (a) dependence of
localization angle on stress state, (b) dependence of critical tangent modulus on stress state.

All the above expressions have been written for the full three-dimensional formulation. In plane-
stress analysis, we work only with the in-plane components of stress and strain, but the fact that the
out-of-plane normal strain ε33 is nonzero is taken into account. For isotropic elastic materials, the
plane stress condition σ33 = 0 leads to ε33 = −(ε11 + ε22)ν/(1 − ν), and this relation remains
valid for the present class of one-parameter isotropic damage models even after the onset of damage.
The equivalent strain is rewritten in terms of the in-plane components only and its derivatives are
evaluated according to the chain rule. For instance, for the Mazars definition, the values of η1 and η2

to be substituted into (16)–(17) are

η1 =
∂εeq

∂ε1

+
∂εeq

∂ε3

∂ε3

∂ε1

=
〈ε1〉
εeq

+
〈ε3〉
εeq

(
− ν

1− ν

)
=

1

εeq

(
〈ε1〉 − ν2

(1− ν)2
〈−ε1 − ε2〉

)
(26)

η2 =
1

εeq

(
〈ε2〉 − ν2

(1− ν)2
〈−ε1 − ε2〉

)
(27)

The results of plane-stress localization analysis of the isotropic damage model with damage driven
by equivalent strain given by one of the above definitions are graphically presented in Figs. 1–3.
The direction of potential discontinuity is described by the localization angle α, which is the angle
between the normal to the discontinuity and the major principal axis of strain and stress. The cosine
and sine of the localization angle are the components n1,crit and n2,crit of the unit normal vector. This
means that α is evaluated as α = arccos n1,crit = arccos

√
N∗

1 . The critical “rate” of damage growth
needed for localization is described indirectly by the critical ratio between the tangent and unloading
moduli, Eed,crit/Eu, evaluated from (18). Both characteristics depend on the specific choice of the
expression for equivalent strain, on the stress state and Poisson’s ratio. The stress state is sufficiently
characterized by the ratio of the principal in-plane stresses, σ̄2/σ̄1. It is convenient to introduce an
angle θ such that σ̄1 = c cos θ and σ̄2 = c sin θ where c ≥ 0 is an undetermined multiplier. For
σ̄1 ≥ σ̄2, θ varies between −135◦ for equibiaxial compression and 45◦ for equibiaxial tension. The
values θ = −90◦, −45◦ and 0◦ respectively correspond to uniaxial compression, shear and uniaxial
tension.
The results of localization analysis are somewhat surprizing. Consider first the Mazars definition

of equivalent strain. According to Fig. 1a, the localization angle α is equal to 0◦ only for stress states
close to equibiaxial tension. Under uniaxial tension, it is 0◦ only if the Poisson ratio vanishes. For
typical values of Poisson ratio around 0.2, the discontinuity tends to form in an inclined direction, not
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Figure 2: Localization characteristics of model with Rankine equivalent strain: (a) dependence of
localization angle on stress state, (b) dependence of critical tangent modulus on stress state.
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Figure 3: Localization characteristics of model with modifiedMises equivalent strain: (a) dependence
of localization angle on stress state, (b) dependence of critical tangent modulus on stress state.

perpendicular to the direction of loading. Under combined tension and compression, the localization
angle increases and for uniaxial compression it is above 45◦. The critical value of tangent modulus,
plotted in Fig. 1b, is positive in the entire range of stress states combining tension in one direction
with lateral compression in the perpendicular direction. So for this type of stress states, localization
can occur even before the peak of the stress-strain diagram. For uniaxial tension, the critical tangent
modulus is exactly zero for all values of Poisson ratio, and localization can be expected right at peak.
For biaxial tension, the critical modulus is positive for states with a large difference between principal
stresses and negative for states close to equibiaxial tension.
Next, let us discuss the results for the Rankine definition of equivalent strain (Fig. 2). For states

with both principal stresses nonpositive, the equivalent strain is zero and the damage threshold is
never reached, so the model response remains elastic and localization cannot occur. For combined
tensile-compressive stress states, the localization angle is roughly between 20◦ and 40◦, and the corre-
sponding critical modulus is positive. So once again, localization can occur already in the hardening
regime. For uniaxial and biaxial tension, the critical modulus is only slightly positive, and the local-
ization angle becomes 0◦ for states with a certain minimum level of lateral tension.
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Finally, consider the modified Mises definition of equivalent strain (Fig. 3). For uniaxial tension,
the localization angle is zero, and so the discontinuity would be perpendicular to the loading direction.
The same holds for biaxial tension and for tension combined with limited lateral compression. The
critical modulus is positive and quite large for almost all stress states with the exception of those close
to equibiaxial tension or equibiaxial compression. So the localization may occur way before the peak
of the stress-strain diagram.

Localization simulated by finite elements

Some of the results of the theoretical localization analysis have been verified and illustrated by finite
element simulations of a bar under uniaxial tension, discretized by two-dimensional finite elements
(bilinear quads under plane stress). Skewed meshes containing layers of elements of different inclina-
tions have been used, in order to allow for the formation of a localized damage band in an “arbitrary”
direction. It turned out that, on such meshes, no imperfection was needed to trigger the bifurcation
from a uniform state. The numerical solution spontaneously localized into one layer of elements with
the most favorable orientation. This orientation was always very close to the theoretically predicted
one. Due to space limitations, the corresponding figures are omitted here and they will be presented
on the conference poster.
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[5] J. Mazars. Application de la mécanique de l’endommagement au comportement non linéaire et à
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