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Abstract. A numerical scheme is presented to predict crack trajectories in two dimensional 
components. First a relation between the curvature in mixed-mode crack propagation and the 
corresponding configurational forces is derived, based on the principle of maximum dissipation. 
With the help of this, a numerical scheme is presented which is based on a predictor-corrector 
method using the configurational forces acting on the crack together with their derivatives along 
real and test paths. With the help of this scheme it is possible to take bigger than usual propagation 
steps, represented by splines. Essential for this approach is the correct numerical determination of 
the configurational forces acting on the crack tip. The methods used by other authors are shortly 
reviewed and an approach valid for arbitrary non-homogenous and non-linear materials with mixed-
mode cracks is presented. Numerical examples show, that the method is a able to predict the crack 
paths in components with holes, stiffeners etc. with good accuracy.  

Introduction 
Crack path prediction is based on three parts: a criterion for the onset of crack propagation, a 
criterion for the direction of propagation, a criterion for the propagation speed or step length, for 
fatigue or quasi-static propagation respectively. There is a wealth of criteria available, but most of 
the criteria available in the literature cannot consistently by derived without ad-hoc assumptions. 
Furthermore one has to distinguish between approaches for kinking and curving of cracks. Most 
criteria available will give a statement for the immediate directional change of the crack path, thus 
producing a kink. With small step sizes and kinking angles these criteria are then used to represent a 
curved crack path, as a kink will physically only be necessary, if there is an abrupt change  in the 
loading or the material properties. Among the few approaches using curving segments is the one of 
Sumi et al. [1], but he is restricting himself to slightly curving cracks. Most of these criteria are 
unfortunately restricted to linear elastic fracture mechanics, as they are either based on the near tip 
stress field solution or the stress intensity factors. So for nonlinear elastic, inhomogeneous or plastic 
crack propagation methods based on configurational forces have drawn attention [2, 3, 4]. 
Unfortunately the direction of the J-Integral or configurational force vector on the crack tip as the 
directional criterion is not a correct choice as it does not account for the change of the 
configurational forces induced by the kink [5]. This can be seen directly from the fact that this 
criterion predicts always straight crack propagation for pure mode II, which is in contrast with 
experimental observations. Also the calculation of J2 with the help a domain integral type approach 
used in most of these methods is inaccurate. So these criteria are only valid for small kinking 
angles, which results in small steps sizes for an accurate representation of curved cracks. The aim of 
this paper is to present a derivation of a propagation criterion valid for strongly curved cracks with 
finite propagation step sizes and formulated with the help of configurational forces, so the 
numerical approaches presented in [3, 4] can be used to end up with a numerical scheme that can be 
generalized to treat inhomogeneous materials at finite deformations. Additionally a method is 
presented to calculate valid results for J2 from a direct configurational nodal force approach. 
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Crack curving in LEFM  
The derivation of the criterion for curved crack propagation is done with the help of the results 
obtained by Amestoy and Leblond [6] in the framework of linear elastic fracture mechanics. Linear 
elastic fracture mechanics is based on the near tip stress field 

�ij = K� f
�
ij(�) r

�12 + T� g
�
ij(�) + b� h

�
ij(�) +O(r), (1) 

where the K� are the stress intensity 
factors (SIFs), T���the (non-local) T-
stresses and the b� are the coefficients of 
square-root stress terms also used by Sumi 
et al. [1]. The f���g���h��matrices of angular 
functions stem from the Williams series 
solution [7]. A kinked and curved crack 
(Fig. 1) with the elongation of the crack s 
is described by 

y0 = a?x0
3
2 +

1

2
C?x02

. 
Figure 1 The kinked and curved crack 

 
 
The evolution of the SIFs is given by [6] as  

K�(s) = K?
�+K

(1/2)
�

�
s+K

(1)
� s+O(s2/3), (2) 

with 

K?
� = F��(�)K�

K
(1/2)
� = G��(�)T� + a?H��(�)K�

K
(1)
� =

h
K
(1)
�

i�,a?
C?=0

+ C?M��(�)K� , (3) 

where the greek indices run over I, II, III the three crack modes and the matrices F, G, H, M are 
universal functions, depending only on the kinking angle ��and not the special crack problem under 
consideration. The first term in eq. (3c) involves the b-coefficients of eq. (1), but also some non-
universal parts, that means it can only be determined for a special crack problem in a finite body. A 
special note on the non-universal characteristic of the second-order term for curving cracks seems to 
be missing in Sumi et al.’s [1] approach, but is pointed out in [6]. Amestoy & Leblond have derived 
in [6] also the consequences for the crack path of the criterion of local symmetry [8] (KII=0). Here, 
using the same series approach, the consequences of a maximum dissipation postulate should be 
derived, motivated by the work of Le et al. [5], where they have shown, that from the variational 
principle of a body containing a crack the maximum dissipation (or maximum driving force) 
criterion follows without any ad-hoc assumptions. Furthermore the energetic approach has the 
advantage that the crack propagation rate and the driving force acting on the crack can accurately be 
determined for crack kinking and curving and also remain the correct thermodynamic dual 
quantities for these cases.  
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Maximum dissipation for regular curved cracks 
As the criterion for kinking cracks has already been derived in [5], we will here restrict ourselves to 
the case of regular crack propagation, i.e. curving without kinking. This implies for all criteria, that 
mode II has to vanish for the initial crack configuration as it would immediately lead to crack 
kinking. The starting point is thus the dissipation of a growing crack, based on the driving force 
acting on the propagating crack tip. Following [5] we introduce this driving force with the help of 
the actual SIFs 

G(s) = K�(s) K�(s)���

= G?+G(1/2)
�
s+G(1)s+O(s(3/2)) , (4) 

with  

��� =
1� �2

E

�
��
1 0 0
0 1 0

0 0 1
1��

�
��
 (5) 

The terms in the series can be given with the help of eq. (2) as 

G?(�) = K?
�K

?
���� = F�����F�	K�K	

G(1/2)(�, a?) =
³
2K?

�K
(1/2)
� +K

(1/2)
� K

(1/2)
�

�
s
´
���

G(1)(�, a?, C?) =
³
2K?

�K
(1)
� +2K

(1/2)
� K

(1)
�

�
s+K

(1)
� K

(1)
� s

´
��� . (6) 

The consequences of the postulate of maximum dissipation are here for the sake of simplicity 
derived from the maximum driving force principle. The consequences of the two are the same, as 
long as the fracture resistance force does not explicitly depend on the direction crack propagation, 
e.g. through the kinking angle. In the following we restrict ourselves to the two-dimensional case. 

 
Zeroth order approximation The zeroth order term depending only on the kinking angle is the 

driving force acting on a kinked crack already determined in [5].  Introducing KII=0 into this 
solution leads to a vanishing kinking angle �=0. 

 
First order approximation To derive the first curvature parameter a* the maximum driving force 

is determined for the series eq. (4) is cut after the square-root term. 

G(s) = G?(� = �?) +G(1/2)
�
s+O(s) (7) 

The postulate of maximum driving force 


G(s)


a?
=


G(1/2)


a?
= 0

 (8) 

leads to the curvature parameter 

a? = �1
s

���

³
K?
�H��K� +

�
sH��K�G�T

´

���H��K�H�	K	 . (9) 
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Inserting �=0 into the matrix H (cf. [6]) and setting KII=0 for regular crack propagation leads to a 
vanishing first order curvature parameter and thus a vanishing first order driving force 

a? = 0� G(1/2) = 0. (10) 

Second order approximation The driving force series eq. (4) is reduced with the help of eq. (10) 
and �=0 to  

G(s) = G?+G(1/2)
�
s+G(1)s+O(s3/2)

= G+G(1)s+O(s3/2) . (11) 

The second order driving force term can be further simplified with the help of a* = 0 to 

G(1) =
³
2K�K

(1)
� +K

(1)
� K

(1)
� s

´
���  (12) 

And the second order SIF term appearing here reduces to 

K
(1)
� = K

(1)
�

¯̄
¯
straight

+ C?M��(� = 0)K�. (13) 

The first non-universal term in eq. (13) is to be understood as the first order term that would appear 
for a straight (not kinked, not curved) crack propagation. The maximum driving force gives then an 
equation for the second curvature parameter C*  


G(s)


C?
=


G(1)


C?
= 0 = 2���

³
K�M�	K	+K

(1)
� M�	K	s

´
 (14) 

with the solution 

C? =
�2K(1)

II

¯̄
¯
straight

KI
� C? =

�2dKII

ds

¯̄
¯
straight

KI , (15) 

where the second interpretation in the above equation is possible because of the vanishing KII for 
the initial crack. This is the same result as derived in [6] from the principle of local symmetry. Also 
Sumi presented in [5] a similar result for slightly curved cracks. To be able to use a numerical 
approach based on configurational nodal forces in the framework of an FEM simulation, this result 
has to be reformulated in terms of configurational forces. 

Transition to configurational forces 
Configurational forces are to be understood as the forces in material space (in opposite to physical 
space) resulting from the variation in energy due to the change in position of the singularity arising 
at the crack tip (cf. [9]). For the configurational or Eshelby-stress tensor 

�ij = �	ij � uk,j

�


uk,i , (16) 

with ��the free energy density, ui the displacement vector and �ij the Kronecker delta the following 
balance of material momentum equation is valid 
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�ij,j = � 
�


Xi

¯̄
¯
exp, (17) 

where the right hand side term is only non-vanishing, if there exists an explicit dependency of the 
free energy density with respect to the position X in the material. This is only the case for non-
homogeneos materials, e.g. functionally graded materials. For homogenous materials the divergence 
in eq. (17) is vanishing, giving rise to a path-independent conservation integral, the first component 
of which is the widely know J-Integral 

Fi = Ji = lim
��0

I
�
�ijnjds. (18) 

Please note, that eq. (18) shows only an asymptotical path-independency, since the integrand for J2 
is not necessarily vanishing on the crack surfaces. This will be discussed in detail in connection 
with the numerical approach for the accurate determination of the configurational forces in a finite 
element framework. In a linear elastic fracture mechanics framework we have the following 
connection between configurational forces, J-integral vector components and the stress intensity 

factors 

Ft = J1 =
1� �2

E

³
K2
I +K2

II)

Fn = J2 =
1� �2

E

³
�2KIKII).   (19)

With the help of these relations the main 
result of the preceeding section, the 
curvature resulting from maximum 
dissipation can be rewritten as 

C? =

tFn

Ft
=


tFn

kFk ,                           (20)Figure 2 Curved crack with normal and tangential
configurational forces 
where �t is the tangential derivative  (compare Fig. 2). This tangential derivative is to be understood 
as the derivative of the normal component of the configurational force along a straight crack 
elongation. The second interpretation of (20) is valid because for the real crack the normal 
component will vanish in all points.  
Equation (20) means the local curvature of the crack trajectory is the same as the local curvature of 
the material force field. This result seems to be such a natural and straightforward result, that the 
author believes, it will hold in general without the underlying assumptions made earlier in the linear 
elastic fracture mechanics framework.  

Finite element framework 
A finite element framework making use of nodal configurational forces is used, similar to the ones 
described in [3,4]. The essential part is, that this approach gives in a simple post-processing step the 
configuration forces as the thermodyamical dual quantitiy to a variational change of the position of 
the corresponding node with respect to the material 
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Fh =
E

A
e=1

nenX
n=1

Z
Be0
� · �XNe dA

.  (21)

Without discretization errors the finite 
element results for a body with a crack 
would produce only configurational forcees 
acting on the nodes representing the crack 
front (or one force acting on the crack tip). 
Due to the failure of the shape-functions 
normally used in an FEM based approach 
to accurately represent the two singularities 
involved at the crack tip (namely the stress 
singularity and the singularity of the 
Eshelbian-stress, which are of different 
order) also spurious configurational nodal 
forces are produced in the vincinity of the 
crack front (or tip). Figure 3 shows the 
results from a simulation separated into the 

normal and tangential parts; the force acting on the crack tip is marked yellow, the spurious forces 
are marked red.  

Figure 3 Intgegration domains

 

  

Fht  
 

Fhn 

Figure 4 Normal and tangential components of the configurational forces at the crack tip 

 
Figure 5 J1 and J2 values for increasing domain size 
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The accuracy of the forces acting on the tip 
usually is very low. Thus many authors [3,4,5] 
have adopted some method similar to the domain 
integral method, which in this framework 
consists simply in adding up the contributions of 
the nodes contained in a certain area surrounding 
the crack tip (Fig. 4).  

F =
X
ni��

Fhi

Figure 4 shows clearly, that the value for J1, but 
not the value for J2 is converging, when the size 
of the domain is increased. 

 
Because of this extrapolation back to a zero 

area domain is necessary, as suggested by the limit value appearing in eq. (18) hinting to the 
asymptotic path independence of the J-integral vector. 

Figure 6 Forward sensing along the predicted crack path

Step by step propagation scheme 
A step by step numerical scheme has been implemented in the commercial FEM-code ANSYS.  
After each step the geometry has been created newly and a new mesh has been created. After that 
the following scheme has been adopted for each propagation step 

� small test step to determine the curvature  

tFn � Ftest,endn /dstest 
 

� “forward sensing” the ratio �nt/�nn to determine the maximum length  (Fig.6) 
 

� constant curvature propagation 

C? =

tFn

Ft
=


tFn

kFk  
 

� small change of end slope of spline to get vanishing J2  

�corr,end =
Fendn

Fendt

;
Fendn

Fendt

<< 1
 

� or cut back, if J2 / J1 is too big 
 

With the help of this scheme the experiments from Bittencourt et al. [10] have been simulated. 
Figure 8 illustrates, that highly accurate 
results can be attained with a small number 
of propagation steps. 

Figure 7 Specimen by Bittencourt et. al [10]
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Figure 5 Computational result from 20 propagation steps 

Conclusions 
A criterion to describe the crack trajectory of a curved crack has been derived. The formulation in 
terms of configurational forces opens the door to a applicability to a wider range of inhomogenous 
materials or finite deformations. The necessity of an extrapolation technique to determine accurate 
J2 values has been shown. The numerical scheme based on splines and a predictor-corrector method 
enables to take large steps in an FEM simulation as thus save computational effort, while keeping or 
increasing the accuracy of the predicted path. 
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