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Abstract. Computational analysis of damage failure is of great importance in predicting assessment 
of structure integrity. Numerical modeling of ductile material damage using finite element methods 
often suffers from convergence problems of numerical iteration, especially, when working with a 
complex constitutive model as gradient plasticity and nonlocal damage models. Due to large strains 
in damaging elements the computation may result in non-convergence. For the higher order 
gradient plasticity the element formulation is often necessary, which causes additional difficulties in 
implementation and computations. In recent years meshless methods have been developed as an 
alternative for the finite element method (FEM) and can overcome some known shortcomings of 
the latter. One major advantage of the meshless methods is in continuous differentiation of the 
strain tensor for cases with finite strains. Complex constitutive models, such as gradient plasticity 
nonlocal damage models, are easy to be applied in meshless methods. In the present paper we have 
developed and implemented an algorithm of element-free Galerkin (EFG) methods for strain-
gradient based nonlocal damage models and used it to simulate ductile material damage. The 
method provides a reliable and robust method for material failure with large damage zones. With 
the help of the meshless method material failure of specimens as well as the size effect are predicted 
accurately.

1. Introduction 
Most engineering material displays significant dependence on the absolute size of the specimen, so 
called size effects. It has been recognized that the size effect is related to micro-structural 
characteristic in the material and variety of models incorporating material length scale has been 
proposed [12]. In ductile materials failure is characterized by micro-void nucleation, growth and 
coalescence mechanism as introduced by the GNT model [3,4], since it is not derived from purely 
heuristic arguments but from micro-mechanical analysis. In order to catch size effects, several 
nonlocal forms of the GTN models have been proposed [2, 5-7]. Due to the high order 
differentiation of nonlocal treatments, the conventional finite element technique may become 
inapplicable. A robust computational algorithm is essential for the validation and application of 
such a complex constitutive model. In finite element methods, the nodes are attached with the 
elements. It is difficult to construct high order continuous element which is often necessary when 
the high order gradient plasticity theory is applied. Furthermore when material is deformed largely 
due to damaging loading, the meshes will be distorted which will result in non-convergence, the 
decreasing of the accuracy and even the terminal of computation.  

In the last years, meshless methods have been developed rapidly [8-12]. Differently from the 
FEM, meshless methods construct shape function with a series of nodes which is not related to 
meshes. Among meshless methods, element-free Galerkin method (EFG) is one of the most famous 
ones. One of advantages of EFG is that it is possible to model arbitrary growth of cracks without re-
meshing or adaptive refinement at the crack tip is easily accomplished. With adequate refinement, 
stress intensity factors can be computed accurately. EFG method has been applied for elastic-plastic 
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fracture analysis [9,10]. All of the former EFG cracks analyses are with local models, and no size 
effects are considered [14]. Another advantage of EFG is that it has ability to incorporate higher-
order gradients in a straightforward manner, so complex constitutive models such as gradient 
plasticity or elasticity models are very easy to be applied [12,13]. In the presenting paper, we are 
applying nonlocal damage model suggested in [7] with element-free Galerkin method to analyze the 
damage procedure and size effects in a German reactor steel. 

2. Nonlocal damage model based on the gradient plasticity 
It is known that in conventional solid mechanics, the stress state is determined by the deformation 
history at the single material point, the local assumption. The conventional solid mechanics is quite 
sufficient for most applications, but there are some experimental evidences indicating that under 
certain circumstances the material micro-structure must be taken into account in a suitable way. 
Recently, the material modeling including micro-structure characteristics has been extensively 
discussed [1, 2, 5-7]. As suggested by Aifantis [1], the flow stress depends on both plastic strain 
and its gradients as 
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  (1) 

where � �p
y ��  denotes the yield stress measured in uniaxial tensile tests and p�  is the equivalent 

plastic strain. � is a function which introduces the intrinsic material length scale characterizing 
micro-structures via the strain gradients. In the present paper the function suggested by Aifantis as  
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where g is a positive coefficient with the dimension of force and assumed as g=�0l2 with �0 as the 
initial yield stress and l as an intrinsic material length scale characterizing micro-structures of the 
material. Through introducing the plasticity theory based on the strain-gradient into the GTN model 
[3,4], the yield function of the micro-mechanical damage model (GTN model) can be written as 
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where the constants q1 and q2 are introduced [4] to bring predictions of the model into closer 
agreement with full numerical analysis. q is the Mises stress, p the hydrostatic stress, and f* the 
effective porosity as defined by Tvergaard [4]. 

Due to the gradient-dependent yield stress the strain localization is avoided as shown in [7]. The 
gradient of the second order in the yield surface the FEM implementation requires C1 element 
formulation [7] which causes significant convergence problems especially in failing elements. In 
the implicit method of solving large-deformation problems, the discretized equilibrium equations 
result in a set of nonlinear equations for the nodal unknown at the end of the increment. In this 
paper, element free Galerkin method is implemented as a user's subroutine in the ABAQUS code 
which uses Newton's method [15]. 

3. Element-free Galerkin algorithm 
The moving least-square approximation is one of the most common meshless methods introduced a 
spatial discretization in the numerical solution of boundary value problems. In the method, only a 
set of nodes and a boundary description are needed to develop the Galerkin equations. The 
interpolants are polynomials that are fit to the nodal values by a least square approximation. The 
approximation was not recognized as moving least squares (MLS), referred to as diffuse elements,
and the method was viewed as a generalization of the finite element method (FEM). In MLS, the 
interpolation of the function u(X) is defined in the domain � as 
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where X denotes the material coordinate in the initial configuration, m is the number of terms in the 
basis, p(X) is the monomial basis function, and a(X) is the coefficients which are functions of X.
Examples of commonly used are linear basis and the quadratic basis. The coefficients a(X) are 
obtained by performing a weighted least square fit for the local approximation, which is obtained by 
minimizing the difference between the local approximation and the function, with 
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The approximation uh(X) can be expressed in the form of shape functions, �i(X), and nodal values, 
uI, as 
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The consistency of order k of the MLS approximation can be satisfied if the basis is complete in the 
polynomials of order k. In fact, any function, which appears in the basis, can be reproduced exactly 
by a MLS approximation. 

In this paper, the updated Lagrangian formulation is used, and the derivation of variables from 
the coordinates in the spatial configuration is needed. In the present work the gradients of the 
plastic strain are calculated directly from the interpolation. The governing equation for the element-
free Galerkin method can be built from 

,dVu j,iij 0
�  �  (7) 

where  ui is the virtual incremental displacement. In the governing equations all variables are 
defined in the current configuration. To solve the non-linear differential integro-equation, the 
Newton method is used [13]. 

In EFG the integration is often performed with help of background cells. In our program, the 
initial integration points for EFG are composed by all Gauss integration points of the background 
elements which can be generated from the existing commercial FEM software. In the later time 
steps, the integration points move with the materials. 

4. Implementation of the EFG algorithm into ABAQUS 
ABAQUS provides a user interface, UEL, to implement user-defined elements in which both 
stiffness matrices and nodal force vectors have to be defined.  In UEL, the nodes constructing the 
elements should be defined. For FEM, elements are constructed by meshes, while in EFG there 
does not exist meshes but support domains. In our EFG implementation, we treat the support 
domains of integration points as elements. The support domain of a point x is constructed by the 
nodes, of which the definition domain can support, also those nodes are required to define the 
corresponding use-defined element. In this sense the user element of the EFG contain generally 
much more nodes than in the conventional FEM element. 

When we use user-defined elements, the number of nodes constructing elements of one type 
should be fixed, while in meshless algorithm the number of nodes in support domains is varying. It 
is impossible to define too many user-defined element types, so in our implementation, when 
defining the user-define element type, we set a upper bound as the number of required nodes, also 
the elements are constructed with the corresponding number of nodes which is often beyond the 
practice, while in actual implementation only those nodes in support domain are used. 
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Note that the treatment of essential boundaries in meshless methods is different from that in 
FEM. Generally speaking, the meshless shape function has no Dirac function property, and the 
boundary displacement cannot be dealt with as simply as in FEM. In our program the penalty 
method is used. To do that the nodes on the essential boundaries are also regarded as the user-
defined elements just like Gauss integration point. So in the meshless algorithm for UEL, the user-
defined elements are composed two parts. The first ones are from the Gauss points on the 
background meshes, in which the element stiffness matrices should be defined. The other ones are 
from the boundary nodes, in which the penalty matrices and displacement vectors are calculated. 
For every element, the stiffness matrix or penalty matrix is added to the matrix 'AMATRX' defined 
in UEL which contains the contribution of this element to the Jacobian (stiffness) or is other matrix 
of the overall system of equations, and the displacement vector is added to the vector 'RHS' which 
is also defined in UEL and contains the contributions of this element to the right-hand-side vectors 
of the overall system of equations.  

5. Computational results 
Computations of the present work are based on the German reactor pressure vessel steel, 
20MnMoni55 [7]. Experimental data reported in the present paper were determined within a 
European research project [7]. The material parameters fit from the experimental tests are as 
following: Young's modulus E=220 GPa, initial yield stress �0=445MPa, and the hardening curve is 
expressed as 
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To identify the material length parameter in the present nonlocal damage is a special task. From 
discussions in [7] the material length is related to plastic deformation and describes localized plastic 
deformation. The material length can determined based on numerical experiments. Summarizing the 
simulations of different specimens we find that the material length should be between 0.2mm and 
0.3 mm. 

5.1 Analysis of uniaxial tension specimens 
The uniaxial tension tests are performed at room temperature. Different strain rate from 10-5 to 10-3

are examined which shows that the effects of the strain rates are insignificant. To study effects of 
the specimen size on tensile strength, a series of uniaxial tests has been performed. The specimen 
diameters are 3, 9 and 30 mm named R1, R2 and R3, respectively. The geometry of all specimens is 
shown in Fig. 1. All specimens discussed in the present paper are free of residual stress at the initial 
state and tested at the room 
temperature. Before material damage 
becomes significant in the tension 
process, deformations in the 
specimens are homogeneous and the 
stress is a monotonic increasing 
function of the strain, the measured 
stress vs. strain is independent of the 
specimen size. Furthermore the 
specimen begins to neck where the 
material is relatively weaker due to 
e.g. heterogeneity than elsewhere. As 
soon as the specimen necking starts, 

Figure 1: Geometry of the uniaxial tension specimens. Three 
different sizes are considered [7]. 
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the traction decreases and the stress state 
around the necking becomes triaxial. The 
necking and triaxial stress state let strain 
growth localize in a small process. 

The computational results of engineering 
stress vs. elongation are compared with that 
of experiments. In Fig. 2, the computational 
results are plotted as curves while the 
experimental ones are plotted as symbols, and 
the former agree well with the latter. The 
uniaxial tension records do not show obvious 
influence of the specimen sizes. It can been 
seen from the picture that the results of the 
smallest specimen R1 is only very slightly 
different from that of the other cases which 
supports that the prediction of the gradient 
plasticity manifesting the size effect correlates 
with the plastic strain gradients. 

Fig. 3 shows the results of elongation vs. 
necking which is defined as �R/R0 and 
denotes the radius variation ratio, where R0 is 
the initial radius in the middle specimen and 
�R is the corresponding variation. The 
computations agree well with experiments 
[7]. Before material damage becomes 
significant the necking is a monotonic 
increasing function of the elongation and the 
ratio is about 2. Actually, in this case the 
deformation is homogeneous and the volumes 
of specimens are approximately invariable 
compared with the plastic deformation. With 
damage growth the necking becomes much 
acuter.

5.2 Analysis of notched specimens 
The numerical and experimental results of the 
uniaxial tension specimens confirm that the 
size effect in material deformations and 
failure are not related to the strain amplitude. In this section, a series of notched tension specimens 
is tested under the same condition as the uniaxial specimens. Three specimen geometries are 
considered termed as T1, T2 and T3, as plotted in Fig. 4. The scaling factors are 1, 3 and 10, 
respectively.

In Fig. 5 both computational and experimental results of engineering stress vs. elongation are 
summarized. The scatters denote the experimental results and the curves denote the numerical ones 
and they agree well. The engineering stress is defined as the tensile force per unit area in the middle 
of the undeformed specimens. Fig. 5 shows significant influence of specimen sizes. The smaller 
specimen shows a smoother stress variation, and the engineering stress of specimen T1 is 
significantly larger than that of specimen T2 and T3 when the elongation is about larger than 4% 

Figure 2: Comparison between the experimental and 
computational results of engineering stress vs. elongation 
for smooth tensile specimens R1, R2 and R3. 

Figure 3: Comparison between the experimental and 
computational results of necking vs. elongation for smooth 
tensile specimens R1, R2 and R3. 
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which is to say that smaller specimen 
can bear larger stress. T2 and T3 do 
not display obviously influence of 
specimen size.  

Engineering stress vs. necking of 
the notched specimens is displayed in 
Fig. 6. The computational results 
agree not very well for low loading 
levels, although they all show 
significant size effects. The 
experimental results show that the 
specimens neck quickly between the points of about 1.0% and 4.0% elongation. It may be 
illustrated as following: the damage firstly takes place in the in the notched area when the 
specimens are tensed, which can be seen from Fig.7. The damage area near the notched section 
becomes unaltered after it reaches at certain value. Finally, the damage takes place from the center 
of the specimens just like the smooth ones. During the actual measure procedure, the measure tool 
could intrude the damage area near the notched section which seems that the measured radius of 
specimens becomes smaller. This result has been observed in other analysis [7]. 

Fig.7 illustrates the contour of the current void volume fraction function f* in the area near 
necking. Different from the results from the smooth tensile specimens, the damage takes place 
firstly starting from the notched section of the specimen, but it doesn't extend to the center of the 
specimens from beginning to the end. Finally, the damage takes place in the middle of the 
specimens just like that of smooth tensile specimens. The computational results of void volume 
fraction function f* increases quickly after fc. But the curve from T1 lags that of T2 and T3 much 
more obviously than that from smooth tensile specimens, which is to say the size effects are much 
more obvious for notched specimens.  

Figure 4: Geometry of notched specimens. Three sizes are considered. 

Figure 5: Comparison between the experimental and 
computational results of engineering stress vs. 
elongation for notched specimens T1, T2 and T3. 

Figure 6: Comparison between the experimental and 
computational results of necking vs. elongation for 
notched specimens T1,T2 and T3. 
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6. Conclusions: 
The nonlocal damage model 

modified from the known GTN model 
is implemented with the element-free 
Galerkin method into the commercial 
FEM code ABAQUS. The background 
cells are treated as elements and the 
element-free method can be generally 
realized in the frame of FEM codes. 

The computational results are 
compared with that of experiments for 
both uniaxial tension specimens and 
notched specimens and they agree 
very well. Both experimental and 
computational results exhibit obvious 
size effects for the notched specimens 
in which the smaller ones can afford 
larger stress and damage more 
difficultly. The computational 
accuracy and robustness are higher 
than the FEM developed based on the 
C1 element formulation. The EFG can 
be used for computational analysis of cracked specimens. The efficiency of the EFG is lower than 
the corresponding FEM. Results presented in the present paper confirm that the nonlocal damage 
model with element-free Galerkin method is suitable for computing the damage problems and 
predicting the size effects. 
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