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Abstract. A phenomenological description of the fatigue life of engineering components can be 
given either by plotting the applied stress range as a function of the total number of cycles to 
failure, i.e., according to the Wöhler’s curve, or, after the advent of fracture mechanics, by plotting 
the crack growth rate in terms of the stress-intensity factor range, i.e., using the Paris’ curve. In this 
work, an analytical approach is proposed for the study of the relationships existing between the 
Wöhler’s and the Paris’ representations of fatigue. According to dimensional analysis and the 
concepts of complete and incomplete self-similarity, generalized Wöhler and Paris equations are 
determined, which provide a rational interpretation to a majority of empirical power-law criteria 
used in fatigue. Then, by integration of the generalized Paris’ law, the relationship between the 
aforementioned generalized representations of fatigue is established, providing the link between the 
cumulative fatigue damage and the fatigue crack propagation approaches. Moreover, paying 
attention to the limit points defining the range of validity of the classical Wöhler and Paris power-
law relationships, whose co-ordinates are referred to as cyclic or fatigue properties, alternative 
expressions for the classical laws of fatigue are proposed. Finally, the correlations between such 
fatigue properties are determined according to theoretical arguments, giving an interpretation of the 
empirical trends observed in the material property charts. 

Introduction
The existing approaches for the prediction of fatigue life can be distinguished in two main 
categories: those related to the Cumulative Fatigue Damage (CFD) approach, which is the 
traditional framework for fatigue strength assessment, and those based on the Fatigue Crack 
Propagation (FCP) approach, developed since the 1960s after the advent of fracture mechanics.  

At present time, the CFD analysis based on the Wöhler or S-N curves [1] still plays a key role in 
predicting the life of components and structures subjected to field-load histories. In the empirical S-
N curve, the fatigue life, N, is related to the applied stress range, ��  or S, and a reasonable power-
law approximation was discovered since 1910 by Basquin [2]. A schematic representation of the 
Wöhler’s curve is shown in Fig. 1a, where the cyclic stress range, max min� � �� � � , is plotted as a 
function of the number of cycles to failure, N. In this diagram, we introduce the range of stress at 
static failure, (1 )u uR� �� � � , where u�  is the material tensile strength, and we define the 
endurance or fatigue limit, fl�� , as the stress range that a sample will sustain without fracture for 

71 10N� � �  cycles, which  is a conventional value that can be thought of as “infinite” life.
With the advent of fracture mechanics, a more ambitious task was undertaken, i.e., to predict, or 

at least understand, the propagation of cracks. Plotting the crack growth rate, da/dN, as a function of 
the stress-intensity factor range, max minK K K� � � , most of the experimental data can be interpreted 
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in terms of a power-law relationship, i.e., according to the so-called Paris’ law [3,4]. A schematic 
representation of the Paris’ curve is shown in Fig. 1b. Note that the power-law representation 
presents some deviations for very high values of K�  approaching cr IC(1 )K R K� � �  [5], where 

ICK  is the material fracture toughness, or for very low values of K�  approaching the threshold
stress-intensity factor range, thK� . Again, in close analogy with the concept of fatigue limit, the 
fatigue threshold is defined in a conventional way as the value of K�  below which the crack grows 
at a rate of less than 91 10��  m/cycle.  

(a) (b)
Figure 1: schemes of the (a) Wöhler and (b) Paris’ curves with the related fatigue parameters. 

For a long time, the CFD and the FCP approaches have been considered as totally independent. 
In the last few decades, the researchers have attempted to extend the field of application of the FCP 
approach [6-9]. These advances in understanding the complex phenomenon of fatigue crack growth 
shed a new light on the possibility to unify the CFD and the FCP approaches, and to solve the 
challenging task of interpreting the Paris and Wöhler power-law regimes within a unified 
theoretical framework (see also [10-12]). 

In the present paper, we extend the dimensional analysis approach, originally proposed by 
Barenblatt and Botvina [13-14] for the study of the size-scale effects on the Paris’ law, to derive 
generalized Paris and Wöhler representations of the phenomenon of fatigue. Moreover, by 
integration of the generalized Paris’ equation and comparison with the generalized Wöhler’s 
representation, the relationships existing between these two approaches is obtained. This will 
permit to interpret both FCP and CFD approaches within a unified theoretical framework. Finally, 
alternative expressions to the Paris’ and Wohler’s curves are provided in the corresponding fields of 
variation, replacing the parameters entering the power-law equations by the so-called static and 
fatigue properties, such as the tensile strength, the fracture toughness, the fatigue limit and the 
threshold stress-intensity factor range. In doing so, analytical correlations between the fatigue 
properties of engineering materials are determined and compared with the empirical trends 
proposed by Fleck et al. [15], giving a rational interpretation to the fundamental fatigue property 
charts.

Generalized mathematical representations of fatigue and their relationships
According to the pioneering work by Barenblatt and Botvina [13], the following functional 
dependence can be considered for the phenomenon of fatigue crack growth: 
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� 	IC th
d , , ; , , , , ;1 ,
d u

a F K K K h d a R
N

� 
� � � �            (1) 

where the governing variables are summarized in Table 1, along with their physical dimensions 
expressed in the Length-Force-Time class (LFT).  

Variable definition Symbol Dimensions 

Ultimate tensile strength u� 2FL�

Fracture toughness ICK 3/ 2FL�

Frequency of the loading cycle 
 1T�

Stress-intensity factor range K� 3/ 2FL�

Threshold stress-intensity factor range thK� 3/ 2FL�

Stress range �� 2FL�

Fatigue limit fl�� 2FL�

Characteristic structural size h L

Microstructural dimension (grain size) d L

Crack length a L

Loading ratio R �

Table 1. Governing variables of the fatigue crack growth phenomenon 

Considering a state with no explicit time dependence, it is possible to apply the Buckingham’s 
�  Theorem [16] to reduce the number of parameters involved in the problem (see also [17-20]). As 
a result, we have: 

� 	
2 22 2 2

IC th IC
2 2 2

IC IC IC IC IC

d , , , , ;1 ,
d

u u u
i

u u

a K K K Kh d a R
N K K K K K

� � �
� �

�  �  � � �
� � � � � �� � � � � �
� � � � � �

                             (2) 

where i� ( 1, ,6)i � �  are dimensionless numbers. Note that 3�  corresponds to the square of the 
dimensionless number Z introduced by Barenblatt and Botvina [13] and to the inverse of the square 
of the brittleness number s introduced by Carpinteri [17-20]. The number 5�  was firstly considered 
by Spagnoli [8] for the analysis of the crack-size dependence of the Paris’ law parameters.  

At this point, we want to see if the number of quantities involved in the relationship (2) can be 
reduced further from six. This can occur either in the case of complete or incomplete self-
similarities in the corresponding dimensionless variables. In the former situation, the dependence of 
the mechanical response on a given dimensionless number, say i� , disappears and we can say that 

i�  is non essential for the representation of the physical phenomenon. In the latter situation, a 
power-law dependence on i�  can be proposed, which usually characterizes a physical situation 
intermediate between two asymptotic behaviours.  

Considering incomplete self-similarity in the nondimensional variables 1� , 4� , 5�  and 6� , we 
obtain the following generalized representation of fatigue crack growth: 
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                                             (3) 

Equation (3) can be considered as a generalized Paris’ law (see the classical expression in Fig. 
1b), in which the main functional dependencies of the parameter C have been explicitated. This 
generalized mathematical representation encompasses several improved versions of the Paris’ law 
proposed in the past to cover specific anomalous deviations from the simplest power-law regime 
suggested by Paris, such as the grain-size [21,22] and crack-size dependencies of C [6,8,9]. The 
effect of the loading ratio R is also included through the incomplete self-similarity in 6� .
 So far, the crack growth rate has been chosen as the main output parameter characterizing the 
phenomenon of fatigue crack growth. However, we can also consider the number of cycles, N, as 
the parameter representative of fatigue. Following this route, we postulate the following functional 
dependence:

� 	IC, , ; , , , , ;1 ,u flN F K h d a R� 
 � �� � � �                                   (4) 

where the definition of the governing variables is provided in Table 1. Considering a state with no 
explicit time dependence, it is possible to apply the Buckingham’s �  Theorem [16] to reduce the 
number of parameters involved in the problem: 

� 	
2 2 2

2 2 2
IC IC IC

, , , , ;1 ,fl u u u
i

u u

N h d a R
K K K

�� � � �
� �

�� �
� � � � � �� �

� �
                                       (5) 

where �  is a nondimensional function. At this point, we want to see if the number of quantities 
involved in the relationship (5) can be reduced further from six. In close analogy with the procedure 
discussed for the Paris’ law, we assume incomplete self-similarity in 1� , 4� , 5�  and 6� ,
obtaining:
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                                                             (6) 

Equation (6) provides a generalized Wöhler relationship of fatigue and encompasses the empirical 
S-N curves approximated by the Basquin power law and by the Coffin-Manson criterion as limit 
cases when 1 n� � � , 2 3 0� �� �  and 4 n� �  (see the Equation reported in Fig. 1a).

The cornerstone for determining the relationships existing between the CFD and the FCP 
approaches is represented by the integration of the generalized Paris’ law in Eq. (3) between an 
initial defect size, a , and a generic final crack length, fa , corresponding to a given fatigue life N .

Recalling that K a� �� � �  for a Griffith crack, then the integration gives the following result: 
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which can be simplified by noting that 
1 11 3 32 1

2
fa a

�
� � �

� � �� �
� �

� � �� �
� �� , since the exponent of the crack length is 

negative valued and fa a� . Under such conditions, the fatigue life can be approximated as 
follows: 
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A comparison between Eq. (6), obtained according to dimensional analysis arguments, and Eq. 
(8), obtained through the integration of the generalized Paris’ law in Eq. (3), leads to the following 
relationships between the powers entering the two representations: 

1 / 2
1

1 1 2 2 3 3 4 4 2
1 2

3

1;  ;  1 ;  ;  .
2 1

2
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� �
� �� � � � � � � � � � � � � �� � �� � � � �� �� �� �� �� �

                 (9) 

Alternative representations in the classical power-law regimes and analytical correlations 
between the fatigue properties of engineering materials 

Let us consider the limit points in the Wöhler’s curve defining the range of validity of the power-
law approximation relating the stress range, ��, to the cycles to failure, N, i.e. the points 
corresponding to the cyclic stress at static failure, u�� , and to the fatigue limit, fl�� . In this range, 
the S-N curve can be approximated by a simple equation fully characterized by its exponent n:

1/ n
uN� � �� � � .                                                                     (10) 

Evaluating the S-N curve in correspondence of the fatigue limit, 1/ n
fl uN� � �

�� � � , a one-to-one 
relationship between the exponent n and the co-ordinates of this special point of the Wöhler’s curve 
can be determined:  

log log1
log

fl u

n N
� �

�

� � �
� � ,                                                            (11) 

where, by definition, 71 10N� � �  cycles corresponds to an “infinite” fatigue life. As a result, an 
alternative expression for the classical Wöhler’s curve can be considered, where the exponent n can 
be written in terms of the fatigue properties u��  and fl�� .
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As far as the Paris’ law is concerned, let us consider the limit points defining the range of 
validity of the power-law approximation. They correspond, respectively, to the points with 
horizontal co-ordinates equal to the fatigue threshold, thK� , and to crK� , where the Paris’ 
instability coincides with the Griffith-Irwin crack growth instability when maxK  tends to the 
fracture toughness. In this range, the Paris’ curve is usually defined in terms of the parameters C
and m (see the Equation reported in Fig. 1b).

Now, let us consider the useful construction added with dashed line to Fig. 1b, as proposed in 
[15]. If a tangent is drawn at the mid-point of the central linear region of the curve and extrapolated, 
it is found empirically that it intersects the vertical line thK K� � �  in correspondence to a crack 

growth rate of approximately 9
th 1 10v �� �  m/cycle, and it intersects the line 

cr IC(1 )K K R K� � � � �  at about 5
cr 1 10v �� �  m/cycle. Evaluating the Paris’ law in 

correspondence of the second point, the following correlation between the parameters C and m of 
the Paris’ curve can be obtained [5,11], which provides an explanation of the empirically-based 
correlations available in the Literature [23]:  

cr

IC(1 )
m

vC
R K

�
� ��� �

.                                                                                (12)  

Repeating this reasoning for the point defined by the fatigue threshold, the following relationship 
holds:

� 	
th

th
m

vC
K

�
�

,                                                                     (13)  

which establishes a link between the Paris’ law parameter C and the coordinates of the point 
defining the condition of non-propagating cracks. Equating the second members of Eqs. (12) and 
(13), we find that the ratio between the fatigue threshold and the fracture toughness is a function of 
the Paris’ law parameter m, i.e.:

� 	 � 	th th th th

IC cr IC cr

11     log log 1 logm
K v K vR R

K v K m v
�  � � �

� � � � � �� � � �
� � � �

.                                           (14)

Equation (14) establishes a one-to-one correspondence between thK� , ICK  and m in the long-
crack regime and was experimentally confirmed by Fleck et al. [15] for a wide range of materials.  
Considering the fatigue property chart reported in Fig. 2a, we notice a very good agreement between 
the experimental trend and the proposed correlation, being R=0 and 

9 5
th crlog( ) log(1 10 1 10 ) 4v v � �� � � � � .

Finally, a relationship between the fatigue stress-intensity factor threshold and the fatigue limit 
can be derived by considering the propagation of a Griffith crack of length 02a  in an infinite elastic 
plate subjected to cyclic loading with fl� �� � �  acting at infinity and 0R � . The initial crack 

length is chosen as representative of the size of the existing microdefects, i.e., 2
0 IC( )ua K � �� .

Considering the integrated Paris’ law in Eq. (8) from 0a  up to 2
IC( )f fla K � �� �  corresponding 
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to N N��  (setting also 1 m� � , 2 3 4 0� � �� � � , and 2 2
IC 2/m

uC K ��� �  for the sake of simplicity), 
we find: 

� 	 � 	

22/ 2
IC2

0
2 2
2 2

mmmm
fl

u

KC N a
m m

��
� �

���

�
� 

� � � � � �� � � �
,                                    (15) 

where the definition of 0a  has been suitably introduced. Equation (15) permits to obtain a closed-
form relationship between the fatigue limit and the fatigue threshold. In fact, considering Eq. (13), 
we can relate the parameter C to thK� . Moreover, noting that IC thu flK K� �� � � , we obtain, 
after some manipulation, the following approximate correlation between the fatigue threshold and 
the fatigue limit, strictly holding for R=0:

� 	 � 	th th
th th

2 21    log log log .
2 2 2fl fl

m v N m v N
K K

� �
� �� �� �� �

� � � � � � � �� �
� �

        (16) 

A direct comparison between this proposed correlation and the experimental trend observed for a 
wide range of materials and collected in the fatigue property chart by Fleck et al. [15] is proposed 
in Fig. 2b. As can be seen, the analytically predicted linear relation between the fatigue threshold 
and the fatigue limit is correctly reproduced. 

(a) (b)

Figure 2: fatigue property charts (adapted from [15]). 

Conclusions

In the present contribution, a dimensional analysis approach and the concepts of complete and 
incomplete self-similarity have been applied to the Paris’ curve, extending and generalizing the 
pioneering work by Barenblatt and Botvina [13], and, for the very first time, to the Wöhler curve. 
As a main conclusion, it has been shown that the large number of power laws used in fatigue are the 
result of incomplete self-similarity in the corresponding dimensionless variables. This gives a 
rational interpretation to such empirically-based fatigue criteria, towards a unified description of 
fatigue and a possible standardization. Moreover, the integration of the proposed generalized Paris’ 
law and the comparison with the generalized Wöhler curve has permitted to find the relationship 
between these two representations of fatigue. 
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Alternative expressions of the classical Wöhler and Paris equations have also been proposed, 
where the parameters entering the power laws are rewritten in terms of the cyclic properties of 
engineering materials, that are true material parameters. In doing so, analytical correlations between 
the cyclic properties have been established, providing an analytical interpretation to the empirical 
correlations existing in the Literature and to the well-known fatigue property charts. 
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