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Abstract. In this paper the modeling of strength and fracture toughness of nanofibrous composites 
is based on the consideration: 1) the shear strength between nanofibres and polymeric/ceramic 
matrix and 2) the crack bridging mechanism due to nanofibers which connect the crack surfaces. 
The special fracture criterion for a problem of quasi-static growth of a nanocrack/microcrack with 
the bridged zone of a large scale is proposed and considered. In frames of the considered model the 
macroscopic parameters of nanofibrous composites are modeled on the base of the nano/micro 
parameters of material structure. 

Introduction
Composites based on polymers or ceramics matrix and filled by nanosized particles or 

nanotubes are materials with strong and tough mechanical properties. The mechanisms of 
toughening these materials by nanoparticles have investigated experimentally [1-3]. From the 
experimental observations it has been found:1) the main parameter which defines the 
nanocomposite strength is the adhesion between matrix and nanofiller; 2) the crack bridging 
mechanism is very important during nanocracks formations and fracture of nanocomposites. Noted 
also that in the most observed cases the size of the nanocrack bridged zones were comparable with 
the whole crack size. These cases need special consideration during the bridged zone and crack tip 
growth. 
Below the mechanical model to describe the nanotubes-polymer matrix adhesion and the two-
parametric fracture criterion for a problem of quasi-static growth of a crack with large scale bridged 
zone are considered. 

Shear-lag model for nanotube-polymer matrix interaction 
The model of nanotube-polymer adhesion based on the shear-lag approach was proposed 

previously in [4] and discussed in the frames of nanomechanics in [5]. In our approach, it is 
supposed that a nanotube is a straight cylindrical fiber of length  embedded in an infinite 
polymer matrix. A nanotube under an external normal loading has only displacements along its axis 
and a thin layer of the polymer matrix adjacent to a nanotube is bearing only shear stresses 
(interface layer). It is also supposed that the interfacial shear stresses between the polymer matrix 
and the nanotube depend on the interface layer thickness ( ) and the fiber (nanotube) axis 
displacement ( u ) as follows 

cL

H

1
1 1,i

Gu
H

� � �� � ,   (1) 

where  is the shear modulus of the interface layer under an elastic strain. 1G
We will also suppose, if the shear stresses i�  exceed a given value 1m um� ��  then shear 

stresses in the interface layer between the fiber and the matrix are described by the equation 
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where  is the shear modulus of the interface layer on the hardening/softening parts of the 
deformation law curve, . 

2G

mu u�
If the displacement of the nanotube axis attains the critical value  then the detachment of 

the nanotube from the matrix occurs. 
cru

Note, that the interface layer thickness ( ) may depend, in general, on the position along 
the nanofiber (coordinate 

H
x ) and the shear stress at the detachment state ( cr� ) may be nonzero. 

After combining of equations (1) and (2) we can write the interface deformation law as follows 
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where  are the stiffness on the hardening/softening parts of the shear-displacement law 1,2�
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and the value  is the critical elongation of the nanofiber (see Fig. 1). cru
 The deformation with the softening ( cr m� �� , the bottom sign in (3-4)), or with the 
hardening ( cr m� �� , the upper sign in (3-4)), can be considered in dependence on the values m�  and 

cr� , see Fig.1. 
 The equation of equilibrium for an infinitely small part of the nanotube embedded in the 
polymer matrix has the following form 
 

       
 �2 2 ( )0.25 ( )i
d xD d D x

dx
�� � � � �   (5) 

where ,D d  are the outer and inner tube diameters, � - is the normal load at the arbitrary nanotube 
fiber section. 
 Suppose that the axial deformation of the nanotube fiber is elastic, then, taking into account 
the temperature difference during the cure, ��, we can write 

( )( ) f f
du xx E

dx
� �� ��

� �
T� �� �   (6) 

where fE  and f� are the elastic modulus and the thermal expansion coefficient of the nanotube, 
respectively. 
 Finally, substituting equations (3) and (6) into the equilibrium equation (5), taking into 
attention the changing of the shear stress law along the nanotube axis and the possibility of the 
nanotube detachment, we obtain the following system of the differential equations for the axial 
displacements of the nanofiber: 
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The point mx  in (7) is the position along the axis of the nanotube where the deformation law 
changes according to eq. (2) and the point crx  is the detachment point position. This system of the 
differential equations solves together with the appropriate boundary conditions and the additional 
conditions of continuity and compatibility at the point of changing the deformation law mx where 

 mu u�
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and the conditions at the detachment point crx  where cru u� are 

     2 3
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Note, that if the interface layer thickness ( ) depends on the coordinate then equations (7) can 
only be solved numerically, for instance, by finite difference method. 

H

The simple case of the constant thickness of the interface layer thickness ( ) was initially 
considered. The equations (7) in this case have the known analytical solution. The different types of 
the boundary conditions for the embedded nanotube, the shear stresses distributions along of a 
nanotube axis and normal stresses in the nanotube section were considered based on the solution of 
the equations (7). 

H

The relation between the crack opening displacement and the bonds tractions (the bond 
deformation law) depends on the model of nanotube-matrix interaction. The general form of spring-
like bonds deformation law which can be obtain from the equations (7) and the boundary conditions 
at the nanotube ends can be written as follows, [6] 

0( ) ( ) ( )iu x c x q xi��     (10) 

where the function  can be considered as the effective bond compliance, 0c 2
xq q� � � 2

y  is the 

modulus of the traction vector, , are normal and shear tractions on the cracks surfaces. ,i x y� iq
The stresses and displacements at the crack end zone are determined from numerical solution of the 
singular integral-differential equations system or the boundary element solution for general case of 
the bond deformation law. 
 
Estimation of nanocomposites shear strength 
 
Let's define the average shear stress a�  along of a nanotube part of the length  as follows cL

0
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a i
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L
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For a case when the shear stresses ( )i x�  are dependent on the axis displacements  linearly 
in the whole range of the external loading and at the nanotube sections  and 

u
0x � cx L�  are 

adopted the following boundary conditions 
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the dependence of the shear stresses over the nanotube axis can be obtained as follows 
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By using formula (13) we can write for the average shear stresses 
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Let's note, that the average value of the shear stresses (14) coincides with the value of the 
shear stress for an ideally-plastic matrix [5]. 

The dimensionless shear stresses (the shear stress concentration factor, SCCF) can be 
defined as follows 
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Dimensionless shear stresses for the linear deformation law can be obtained by 
incorporating eqs. (13) and (14) 
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Within the framework of the linear deformation law the maximal value of the shear stresses 
is observed on loaded end of the nanotube ( cx L� ). 

The following parameters of nanotubes and matrix were used for the computation: 1) the 
nanotube external diameter - 5D nm� ; 2) the nanotube internal diameter - d = 4.32 ; the wall 
thickness of single-wall nanotube - h = 0.34 ; the critical length of the nanofiber - L

nm
nm c = 100 

;the elastic modulus of the nanotubes - nm 1fE TPa� ; the Poisson ratio - 0.25) � ; the critical 
external stress - 50f GPa� � ; the thickness of the intermediate layer - H D� . The parameter ( ) 
of the hardening part of the deformation law was chosen supposing that . The case 

 corresponds to the ideal plastic flow. The values of the relative stiffness of the interface 
layer for the given values of 

2G

20 G G� � 1

2 0G �
, , fD H E  and 0.0005, 0.00025, 0.000125* � are determined as follows 
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The average shear stress for linear deformation law and given above values of parameters 
, , ,f cL D d�  is equal to 158.44a MPa� , . 

The dependencies of the shear stress over the nanotube length for different values of the 
relative stiffness of the layer, are given in Fig. 2. Note, that the results in Fig. 2 are close to the 
experimental results [7,8] where the shear stresses for nanotube based composites were 
investigated: 138 MPa (epoxy matrix) and 186 MPa  (polystyrene matrix). 

One can also see in Fig. 2 that if the relative stiffness of the interface layer is decreasing 
then the distribution of the shear stresses tends toward the uniform state. 

For a small parameter 1�  it can write 1
1

2
1cL

D
� �

" � ,  

and, therefore, we obtain 
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that is similar to ideally-plastic case [5]. 
The approaches considered in [9] can be used in the general case of nanotubes with non-straight 
axis. 
 
Two-parametric fracture criterion 

Supposing that the bonds stresses and the crack opening along the crack end zone are 
known, the total potential energy of a body containing a crack with bridged zone (in the absence of 
body forces) is  

( ) ( )
e i

ij i i
v s s

w dv t u ds u ds*. � � � /  ! ! !   (19) 

where ( )ijw *  is the density of the deformation energy in the body volume v , ij*  are the components 
of the strain tensor;  are the tractions and displacements at the body boundary and (or) crack 
surfaces ;  is the density of the strain energy of the bonds in the crack end zones, u  is the 
crack opening in the end zones of area . 

i it u 

es ( )u/

is
The crack limit equilibrium corresponds to the following condition 
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The terms in the brackets represent the strain energy release rate at creation of a new crack surface 
and the last term is the rate of the energy absorption in the crack end zone and is associated with the 
energy necessary to create a unit of its new surface. Note, that within the framework of the model 
the rate of the energy absorption depends on the end zone size and bond characteristics. The 
equilibrium end zone size is not assumed to be constant. It can be determined from condition (20) 
while searching for the critical load needs additional conditions of the bond rupture. 
In the general case the strain energy release rate can be defined through the stress intensity factors. 
The stress intensity factors (SIF)  for the interface bridged crack are determined in [6]. I IIK  

Let us calculate the rate of the energy absorption for the interface crack with bonding. 
Denote by  the work of the deformation of bonds and by  the rate of the 
energy absorption per unit thickness of the body. Then 

(bondU d  �) )(bondG d  �
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where b  is the body thickness. 
The density of the strain energy of the bonds is equal to 

( )
2 2 2

0
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u x
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After differentiation in formula (21) with respect to the upper and the bottom limits of the integral 
Finally, we obtain the following expression for the rate of the energy absorption [10] 

0

( ) ( )( ) ( ) ( ) ( )
cru

y x
bond y x c

d

u x u xG d q u q u dx u du G�
�

�� ��
 � � � �� �� �� �

!
�

�

�
� � !  (23) 

1737



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic 

where the second term is the density of deformation energy allocated at break of the bond at the 
trailing edge of the crack end zone and  is the matrix toughness (constant value). cG
Taking into account the notation from (23) the condition of the crack tip limit equilibrium (20) can 
be rewritten as follows (see the details in [10]) 

( ) (tip bondG d G d �  � )�   (24) 

Condition (24) is necessary but insufficient for searching for a limit equilibrium state of the crack 
tip and the end zone. This condition enables us to determine the end zone size, , such that the 
crack tip is in an equilibrium at the given level of the external loads. To search for the limit state of 
both the crack tip and end zone within the framework of the model one should introduce an 
additional condition, e.g., the condition of bond limit stretching at the trailing edge of the end zone 

crd

0 crx d� ��  
2 2 1 2

0 0 0( ) ([ ( )] [ ( )] )x yu x u x u x cr�0� � �   (25) 

where cr�  is the bond rupture length. 
If 

( ) (tip bondG d G d �  � )�   (26) 

at a certain end zone size, d , and 
( ) cru d �� ��   (27) 

then the crack length increases with the end zone growth up to the size crd  without bond rupture. 
This stage of the crack growth can be treated as the system shakedown to the given level of the 
external loads (sub-critical crack growth). 
The crack tip advance with simultaneous bond rupture at the trailing edge of the end zone occurs if 
both conditions 

( ) cru d �� ��   (28) 

and (26) are fulfilled. 
The regime of bond rupture at the trailing edge of the end zone without the crack tip advance is 
observed then conditions 

( ) (tip bondG d G d �  � )�   (29) 

and (28) are fulfilled. In this case the size of the end zone decreases and tends to the limit value  
at the given load. 

crd

The end zone size and crack length are reserved within the framework of the model if the 
inequalities (29) and (27) hold. Thus, the bond rupture characteristics and load level determine the 
fracture regimes: 1) the crack tip advance with the end zone growth; 2) end zone shortening without 
the crack tip advance; 3) the crack tip advance and bond rupture at the trailing edge of the end zone. 

Solving jointly eqs. (24-25) we can determine the critical external loads 0� , the end zone 
size  and the adhesion fracture resistance at the crack limit equilibrium state for the given crack 
length and bond characteristics. 

crd

The dependencies of the adhesion fracture resistance (it is obtained from the solution of the system 
of equations (24) and (25)) for the case of an uniform bonds stresses, , are shown in Fig 3, where 0P

 0 , c
b cr

b

GG P u G1� �  

and the case ( 0, 0cG )1 � � is the case of zero matrix toughness ( ( . As the crack length 
increases the adhesion fracture resistance tends to the constant value. 

)bcG G�
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Fig. 1 Bilinear shear stress-displacement law for the interface layer, u/ucr is relative displacements 
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Fig. 2 Distribution of the shear stresses over the nanotube length for different values of the relative 

stiffness of the interface layer, 1�  
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Fig 3. The adhesion fracture energy vs the crack length 
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