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Abstract. Using this mechanical model, analytical approach and numerical methods, we obtained 
the dependence elastic properties and dimension of nanoobject from the cantilever oscillation 
amplitude. 

Introduction. 
Elastic characteristics of nanoobjects being studied using analytical approach and numerical 
methods. The dependence of elastic stiffness and strength properties is determined from the 
cantilever oscillation amplitude in the atomic force microscopy.  

Atomic force microscopy is a system contains a cantilever-tip and a sample (nanoobject) (Fig. 1). 

 

 
Fig. 1. Atomic force microscopy [1]. 

AM-AFM is a dynamic force microscopy mode where the cantilever-tip is excited at a fixed 
frequency, usually near or at the free resonance frequency. The oscillation amplitude is used as a 
feedback parameter to image the sample topography. The scan technique with using AM is: the 
cantilever-tip is on the object surface, the cantilever oscillates comparatively object. When 
cantilever-tip is contact the object surface, the oscillation amplitude changed. This changing 
depended from elastic and strength object characteristics. Consequently, when we process data 
about cantilever-tip location, we can obtain data about surface relief, elasticity, strength, viscosity. 
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Using analytical approach and numerical methods, in this paper we obtain elastic 
characteristics of nanoobject on basis of cantilever oscillation amplitude. The driving force’s 

frequencies agree with resonance frequencies of cantilever free oscillations (Fig. 2): 
m
��2

0�  

 
Fig. 2. The driving force action. 

 
In this work we consider cantilever-tip like mass point on the spring with stiffness C. The 

object’s model is a without mass point on the spring with �1 (Fig 3). 

 
Fig 3. Mechanical model. 

 

 
Fig 4. The oscillations of the cantilever-tip and the driving force.  
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The oscillations of the cantilever-tip and the driving force are shown in Fig. 4. The oscillations 
reach the stationary regime after several cycles of vibration.  
The system’s motion can be composed of two phase:  

1) The oscillations of the cantilever-tip with object.  
2) The oscillations of the cantilever-tip without object. 

The oscillations of the cantilever-tip and the driving force are described by nonlinear second-order 
differential equation (1): 

),sin( 00 ttAcxxbxm ���� ����  (1) 

where A and �0 – amplitude and frequencies of the driving force,  m – cantilever’s mass, c and b– 

system stiffness and viscosity. Under contact the cantilever-tip with the object stiffness is added to 

the system (eq. 2): 

)()sin( 100 xy�ttAcxxbxm ������ ����  (2) 

Numerical approach 
The numerical solution of equations (1, 2) is shown on Fig. 5. The ho is object height. 

 

 
Fig. 5. The oscillations of the cantilever-tip with object.  

 
The dependence nanoobject height (with different stiffnesses) from the cantilever oscillation 
amplitude is shown on Fig.6. As we can see, the cantilever oscillation amplitude is decrease with 
nanoobject height is raise. The Amax is maximal cantilever oscillation amplitude in the stationary 
regime. 
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Fig.6. Dependence nanoobject height from the cantilever oscillation amplitude 

Analytical approach  

Let introduce nondimensional time: � = �0t. It easy to show the equation (1, 2) can be written as 

equation (3, 4) 

)sin(2 0������ ���	�		  (3) 


�������� )1()sin(2 2
0

2 �����	�		   (4)  

We used the following notations:  
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 �  – small parameter.  

The functions �1 and �2, are the solutions of the equations (3,4): 
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where �11, �12, �21, �22 – integration constants. The oscillations are determined by functions 

 �1 and �2:  
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The type of the solution is shown on Fig.7. In the moment �=�1 a transition from first phase to 
second take place. We try stationary periodical solution.  

 

 
Fig. 7. Type of the solution. 

In the moment � =�1 the first phase of motion finish.  
We have 6 unknown parameters (integration constants �11,  �12, �21, �22, �1 and �0) and we have 

boundary conditions: 
The condition of continuity of the solution:  


��� �� )2()0( 12  
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The condition of periodicity of the solution:  
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For determination �1 and �0 we plot surfaces 
� �)0(2   
�� �)( 12  (Fig. 8). On Fig. 9 we can see a 
crossing surfaces 
� �)0(2   
�� �)( 12  with plane �=
. 
 

 
)0(2�       )( 12 ��  

 
 

Fig. 8. Surfaces 
� �)0(2 , 
�� �)( 12 . 

In this case the value 
=0,7A.  
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Fig. 9. Level line (surfaces 
� �)0(2 , 
�� �)( 12 ) 

The coordinates of crossing all surfaces (Fig. 8) let us obtain values of parameters  �1 and �0. We 
can change the parameter 
 (nanoobject height) and obtain graphic series, which determine solution.  

Summary 
Using this mechanical model, analytical approach and numerical methods, we obtained the 
dependence elastic properties and dimension of nanoobject from the cantilever oscillation 
amplitude. 
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