
17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

Implementation of Damage Tolerance Concepts Into
Stress-Based Fatigue Dimensioning Guidelines 

H.-P. Gaenser1, a, J. Froeschl1,b and W. Eichlseder1,c

1Chair of Mechanical Engineering, University of Leoben, A-8700 Leoben, Austria 
agaenser@mu-leoben.at, bjuergen.froeschl@mu-leoben.at, cwilfried.eichlseder@mu-leoben.at

Keywords: stress concentration, flaw, notch, dimensioning, endurance limit, damage tolerant 
design, Haigh diagram

Abstract. Many real-life engineering components exhibit intrinsic flaws from manufacturing or 
operation. In this contribution, concepts from fracture mechanics are implemented into classical 
mechanical engineering approaches such as fatigue notch factors and Haigh diagrams in order to 
apply the latter methods to the dimensioning of components containing flaws. 

Introduction
In the traditional design approach, unflawed components made of a homogeneous material are 
assumed; they are dimensioned against fatigue with respect to an allowable local maximum stress 
amplitude. However, real-life engineering materials usually exhibit intrinsic flaws such as 
precipitates or voids; and real-life engineering components very often are subject to some damage 
during manufacturing (such as forging defects or quenching cracks) or in operation (foreign object 
damage). Traditionally, such influences have been accounted for by means of empirical correction 
factors. However, from a physical point of view, they are best assessed by means of fracture 
mechanics. In this contribution, a connection is made between concepts from fracture mechanics 
and classical approaches such as Haigh diagrams (accounting for the mean stress influence) and 
fatigue notch factors (accounting for gradient and size effects) in order to apply the latter methods 
to the dimensioning of components containing flaws. 

Mean Stress Influence – Haigh Diagram 

Following El Haddad et al. [1], the dependence of the stress range �� endurable at the fatigue limit 
on the size a of a surface defect is represented well by the empirical equation  
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where ��th is the threshold stress intensity factor (SIF) range for the propagation limit of 
mechanically long cracks, and the intrinsic length parameter l0 is estimated by  
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with �a0 denoting the fatigue limit stress amplitude and ��lim,0 = 2�a0 denoting the fatigue limit 
stress range of unflawed specimens. Y is a correction factor depending on the geometry, taking a 
value of 1.1215 for small surface flaws.  

 
Inserting the expression for the length parameter, Eq. (2), into Eq. (1) gives 
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After algebraic simplification, the fatigue limit stress amplitude �a of a specimen containing a flaw 
of size a is given by 
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with the threshold SIF range ��th and the fatigue limit stress amplitude of the unflawed material �a0 
themselves depending on the stress ratio R [2]. 

The dependence of the threshold stress intensity range on the stress ratio is well approximated by 
a bi-linear function (Fig. 1) [3]. The fatigue limit stress amplitude of the unflawed material may be 
read directly from the Haigh diagram of the unflawed material, see the filled circles in Fig. 2. With 
this data, Eq. (4) gives the fatigue limit stress amplitude of the material containing flaws of size a. 
(filled squares in the Haigh diagram, Fig. 2).  

In such a flaw size dependent Haigh diagram, Fig. 2, it is clearly visualized that there exist four 
complementary limits for the fatigue strength of a flawed component: 

- the Goodman line of the unflawed material, 
- the yield limit of the unflawed material, 
- the stress intensity amplitude threshold for fatigue crack growth (�K limit), 
- the maximum stress intensity threshold for fatigue crack growth (Kmax limit). 
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Fig. 1: Dependence of the threshold SIF range on the stress ratio; typical values for QT steels, after [3] 
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Fig. 2: Flaw size dependent Haigh diagram for S35  
 

Gradient and Size Influence – Fatigue Notch Factors 

Stress concentrations. If the material behaves according to linear elasticity, a stress concentration 
(such as a notch or flaw) is characterized by its elastic stress concentration factor Kt, which relates 
the range of the peak stress ��max to the far-field stress range ��� via 

���� �� tmax K .  (5) 

The fatigue ratio n [4] is defined by the ratio of the actual stress at the notch root at the fatigue 
limit, ���tK , vs. the endurance limit of smooth specimens, ��lim,0 
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and the fatigue notch factor is defined by 
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Gradient Approaches. Experience shows that the fatigue ratio n increases with the stress 
concentration factor Kt, but decreases with the specimen size. The normalized stress gradient � at 
hot spot (x = 0) accounts for both influences: 
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Most gradient approaches [4-6] make use of a modified power law, 

����� 1n , (9) 

with �  = 0.45 and � = 0.3 for steel following Hueck (cf. [4]); other choices of the constants are 
possible depending upon the design standard used, with � typically ranging from 0.3 to 1 [4-6]. As 
the parameters for these correlations were calibrated from large databases compiled from analyses 
of typical engineering components, their range of validity does not extend beyond a stress gradient 
of 10 mm-1. 

Neuber-Novozhilov Averaging Approach. In fact, gradient concepts as presented above are 
conceptually quite close to averaging approaches. As an example, Neuber [7] postulates that the 
effective damaging stress �  in the notch root is computed by averaging over a characteristical 
microstructural length �*, 
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Inserting the Creager-Paris [8] solution for the stress distribution along the bisector of a notch, this 
gives [9] 
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giving a fatigue notch factor of 
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and a fatigue ratio of 
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Microcrack Averaging Approach. While Neuber [7] assumes that damage is induced over a 
certain material volume (or length), other authors assume pre-existing intrinsic flaws of a certain, 
material-specific size l0, cf. [1]. Taking a crack-like flaw of size l0 directly at the notch root, its SIF 
range follows from the Creager-Paris [8] stress distribution in the unflawed component by means of 
a Green’s function approach [9], �
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An equivalent constant stress ��  acting along the crack flanks shall be defined such that it causes 
the same stress intensity as the actual stress field, i.e., 

 

2083



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

0I lYK ����� . (15) 

By equivalencing Eqns (14) and (15), the equivalent stress follows as  
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giving a fatigue notch factor of 
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and a fatigue ratio of 
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Crack Arrest Approach. Instead of defining an equivalent stress, the SIF range at the crack tip 
may directly be compared to the crack propagation threshold SIF range. Above a certain stress 
gradient, cracks up to a certain size may be arrested due to increasing crack closure effects while 
the stress at the crack tip is decreasing; for details, cf. [9].  

Comparison of the approaches presented. Fig. 3 compares the predictions from the different 
models in terms of the dependence of the fatigue ratio n = Kt / Kf  on the normalized stress gradient 
� = 2 / �. For small stress gradients, the gradient approaches on one hand and the averaging 
approaches on the other hand lie very close together. As an explanation for the almost identical 
results of the averaging approaches, note the parallels between the resulting expressions for the 
fatigue ratio from microcrack averaging, Eq. (16), and from Neuber’s averaging approach, Eq. (10): 
both are completely determined by the notch root radius � and the microstructural length parameter 
(l0 and �*, respectively). This is not surprising as, mathematically speaking, the Green’s function is 
just a weighted average of the stresses acting perpendicular to the crack flanks.  

As mentioned above, the crack arrest concept is valid only above a certain stress gradient. This 
value of the stress gradient is quite close to the upper end of the range of validity of the gradient 
models from DIN standard [6] and FKM guideline [5]. 

So, one could view the gradient and crack arrest concepts as mutually complementary 
approaches – the former for blunt stress concentrators (small n), the latter for acute, crack-like 
stress concentrators (large n). On the other hand, one observes that the extrapolation of the gradient 
predictions into the crack-like regime gives results identical to those from the crack arrest 
consideration so that, formally, any stress concentration – including cracks – may be assessed by 
means of a gradient concept. 
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Fig. 3. Comparison of different concepts for fatigue notch factors (material: 0.6C steel). 

 
Highly Stressed Volume Approaches. An alternative approach using the concept of highly 
stressed material volume was first proposed by Kuguel [10] and subsequently used and discussed 
by Sonsino [11], Lin and Lee [12], and Toplack et al. [13]. By highly stressed volume V� we denote 
that volume of material that is subjected to a stress higher than � times the maximum stress 
encountered in the component or specimen under investigation. Typically, the 90% or 95% volume 
V��  or V�!  is used. In his original paper, Kuguel [10] discusses a statistical correlation of fatigue 
data and observes a power-law dependence of the fatigue strength of specimens  �lim,� on the highly 
stressed volume V�  so that, for any two specimens with indices 1 and 2, the following relation 
holds:  
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Sonsino [11] reports the existence of a threshold volume in the range of Vk� � 30…60 mm3 beyond 
which no further decrease of the fatigue strength is observed (Fig. 4). 

If one compares geometrically scaled specimens i of diameter 2 ri in bending, the stress gradient 
�i���#$ri changes due to the scaling. The classical gradient and averaging concepts are therefore able 
to predict a size effect for smooth specimens in bending. One obtains  
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for the gradient concept, Eq. (9), and Neuber’s averaging concept, Eq. (13), respectively. 
Fig. 5 shows the predictions from the different concepts in comparison; the model parameters are 

chosen representative of a typical QT steel. As far as the volumetric concepts are concerned, the 
prediction using "�V = -0.034 as originally proposed by Kuguel is much closer to the other results 
in the area of interest although a choice of "�V = -0.1 gives the same asymptotic behavior as 
Hueck’s method. 

Note that, for any of the gradient or averaging concepts, the fatigue strength approaches a 
saturation value with increasing volume, as observed also experimentally [11]. In order to include 
the asymptote into the volumetric concept, the following empirical equations are proposed instead 
of Eq. (19): 
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with the characteristical volume Vk� corresponding to the volume where the saturation value of the 
fatigue strength for high volumes, �lim�, is approached. For low highly stressed volumes V� << Vk�, 
the asymptotic behavior of the original Kuguel/Sonsino formula, Eq. (19), is recovered. As the ratio 
of the highly stressed volumes equals the ratio of the specimen volumes for specimens of different 
sizes subjected to the same loading, it is admissible to rewrite Eqns (22a,b) with the volume for the 
specimen dimensions near the knee point, 

��� � lrV k
2
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resulting in a scaling of the fatigue strength for bending specimens according to 
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which corresponds to Hueck’s and Neuber’s formulae, respectively.  
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Comparing Eqns (9) and (24a), the modified volumetric model can be made to coincide with the 
gradient concept if its parameters are chosen such that 
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Fig. 4: Size effect. 
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Fig. 5: Comparison of concepts for accounting for the size effect. 
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Summary and Conclusion 
The present contribution has focused on two classical tools used in mechanical engineering for 
dimensioning of components: the Haigh diagram for assessing the mean stress influence, and 
fatigue notch factors for assessing the influence of stress concentrations. 

A modified Haigh diagram has been proposed for components containing flaws that are small 
with respect to the macroscopic stress field. 

For the assessment of macroscopic stress concentration, several concepts for computing fatigue 
notch factors have been re-assessed. It has turned out that gradient and modified volumetric 
approaches are able to capture also the behaviour of small flaws (microcracks) situated near the 
“hot spot” of a stress concentrator. 

Combining these approaches, a fatigue strength assessment of components containing 
macroscopic stress concentrations together with possible flaws at the meso-/microscale is possible 
within the classical mechanical engineering framework of Haigh diagrams and fatigue notch 
factors. 
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