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Abstract. A probabilistic approach is developed to take into account the stress gradient effect on 
fatigue life for structural metallic component. This approach is based on the weakest link concept 
that determines, for a given lifetime, the probability distribution of the fatigue strength. The new 
concept determines the probability that the fatigue life N will be smaller than a specific fatigue life 
Ni. This new concept allows calculating fatigue life and its scatter for any arbitrary loading level. A 
Weibull type probability distribution is used in the proposal, its parameters become functions of 
local equivalent stresses whatever the stress level. The proposed approach was applied to calculate 
the number of cycles to crack initiation for a failure probability of 5%, 63% and 95%. The 
calculated lifetimes were compared with lifetimes obtained from experiments carried out on notched 
cruciform and round specimens, made of two different steels, under constant amplitude loading.

Introduction 

Effect of alternating stresses in structural elements is commonly combined with effect of 
heterogeneous stress distribution. These two effects lead to complex mechanisms of fatigue failure. 
Two of them should be clearly distinguished. The first mechanism concerns the case when a 
particular fatigue crack, responsible for failure, reaches its critical length under the influence of 
heterogeneous stress field. The methods that take into account this mechanism are based on 
averaged stresses over a material domain. The considered domain could be volume [1], plane [2, 3] 
or their simplification such as line domain [4] or point domain [5]. The second mechanism concerns 
the case when the fatigue failure could start at any elementary domain in element but the probability 
of such event depends on the local stress history. Thus, the fatigue failure of the whole element is a 
function of cyclic volumetric stress distribution and dimensions of structural element. This 
mechanism is usually taken into account by probabilistic methods based on the weakest link 
concept.  

This paper concerns the second mechanism of fatigue failure, for which the authors presents a 
probabilistic method of fatigue life assessment related to structural elements based on the weakest 
link concept [6, 7]. Contrarily to the conventional determination of the fatigue strength probability 
distribution for a given fatigue life (a number of cycles to failure), the proposed method hereafter 
emphasizes in the determination of the probability that the fatigue life N is less than a specific life 
Ni. Such approach allows determining fatigue life for any probability level. The calculations are 
based on the Weibull probability distribution which parameters become functions of local 
equivalent stresses. 
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A Weibull based mathematical model 

This paragraph presents the weakest link concept and its application for formulating a two-
dimensional distribution of fatigue failure probability allowing calculates the fatigue life for any 
arbitrary probabilities. Foundations of the weakest link concept, being the base of the Weibull 
theory, were formulated in the twenties of the 20th century. Principal assumptions of the weakest 
link concept are as follows: (i) the element includes statistically distributed defects; (ii) failure is 
going to occur in a certain elementary area (link) of the element that contains the „most harmful 
defect” (in fatigue, and according to the authors failure is seen as crack initiation); (iii) the 
probabilities of failure in each link are independent.  

From experiments it appears that for identical elements (at the macroscopic scale) loaded by time 
dependent forces F(t), the logarithm of the number of cycles N to crack initiation is a random 
variable with a given failure probability density distribution pf. In the successive elements 
(specimens) “the most harmful defect” exhibits different features, and thus the crack initiation 
occurs under different number of cycles Ni. In the case of heterogeneous stress field, the given 
element is divided into sub domains. The probability that a crack will not occurs in the interval [0, 
Ni] means that crack initiation will not occur in any elementary sub domain (weakest link concept). 
Indicating that 

)(i
sP  is the survival probability means that the sub domain (i) will not initiate a crack 

in the number of cycles interval [0, Ni] then the survival probability Ps for the whole element is the 
product of all the individual probabilities 

)(i
sP

∏
=

=

=
ki

i

i
ss PP

1

)( , (1) 
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survival probability distribution in 1939. The usual (Weibull) form of failure probability Pf=1-Ps is 
as follows 
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where Ω0 is the volume or surface reference domain; g(σ) is a function called by Weibull ‘risk of 
rupture’ which form depends on material properties. Weibull proposed function g(σ) with two 
(Eq. 2b) or three (Eq. 2c) parameters, where σ0, σu, m are parameters of stress shift, stress scale and 
shape, respectively. Owing to different material properties on surface and in volume due to, e.g. 
manufacturing process, Weibull considered individual failure probability for volume V (ω = V in 
Eq. 2a) and surface A (ω = A in Eq. 2a). In case of fatigue processes in uniaxial loaded element with 
homogeneous stress distribution σa the failure probability is two dimensional function of stress σa
and fatigue life N, Pf=F(σa, N). In other words, fatigue life scatter obtained under the same stress 
amplitude σa or the same fatigue life may be achieved under different stresses σa. Such two 
dimensional function was considered by Weibull [7], however the mathematical expression was not 
proposed. When the failure of the element is assigned to a specific fatigue life Ni then the failure 
probability Pf is reduced to stress function only. This concept is very popular to determine the 
fatigue limit [8-12] of element under heterogeneous stress distribution. In such case, the specific 
fatigue life Ni is assigned to lifetime (usually around 106-5⋅106 cycles) which defines the beginning 
of “infinite” fatigue regime. Thus, the failure probability is defined as Pf(N<Ni), where Ni is the 
fatigue life of the considered specimen.  
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The present paper is focused on a probability model able to asses the fatigue life (to crack 
initiation) of structural element under heterogeneous stress distribution for a requested probability 
level. The general form of two-dimensional probability distribution is analogous to the Weibull 
expression (Eq. 2a). However, the former stress function of ‘risk of rupture’ g(σ) becomes also the 
function of lifetime N and the failure probability takes the general form as follows 
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The failure probability Pf (before a given lifetime Ni) increases with increasing the stress level σ but 
Pf (for a given σ) also increases with the number of cycles N. The longer structural element is in 
service the failure probability is higher.  

Some researchers [13] lean towards a view that the Weibull distribution describes the scatter of 
fatigue life (under a given stress amplitude σa) in logarithmic scale fairly well. It could be expresses 
by the following equation 
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where μ is the lifetime scale parameter and m is the shape parameter. Because the magnitude of 
fatigue life scatter depends on the stress level, σa then the distribution parameters μ and m should be 
a function of stress amplitude. The correct conditioned (on stress level) scale parameter μ must 
enable to perform comparison of fatigue life scatters obtained under different stress amplitudes σa.
In this connection, the scale parameter μ takes the form μ = log(Nf), where Nf is the characteristic 
fatigue life (reference) for a given stress σa. The value of Nf is determined from the reference fatigue 
curve, e.g. σa-Nf. For a constant scale parameter μ=log(Nf) the parameter m responds for the shape 
of the distribution that is for fatigue life scatter. Therefore, the shape parameter m is a factor 
reflecting first, manufacture quality of the element. Secondly, the shape parameter must reflect the 
relation between the scatter band of fatigue lives and stress levels. Under loading equal to the 
ultimate tensile strength, the fatigue life does not exhibit any scatter compared with the fatigue 
scatter (in fatigue sense, Nf → 1 of loading cycle). On the other hand, under loading in the fatigue 
limit regime some specimen fails, and some others have unlimited fatigue life. It means that scatter 
of fatigue lives depends on stress amplitude which could be related to log(Nf). This relation is 
modeled by a proposed simple function (Eq. 5) –where p is a constant parameter. The mathematical 
relationship between σa and N (σa = σa(N)) is known by the empirical reference SN curve (Basquin 
equation for instance) 
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In other words, the coefficient p can be seen as a quality factor of both element manufacturing 
process and material (internal defect for instance). Finally, the failure probability distribution of the 
element, before N under the stress amplitude σa, takes the form: 
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In the case of uniform stress distribution, Eq. (6) reduces to Eq. (7) 
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For instance, Fig. 1a shows a two-dimensional distribution of failure probability obtained from 
Eq. (7), using the fatigue reference Wöhler curve (σa-Nf) of 18G2A steel (Tab. 1) with p = 580. 

Fig. 1b illustrates experimental fatigue tests data used to identify the reference curve σa-Nf  along 
with scatter band obtained for Pf=0.05 and Pf=0.95. Experimental tests were stopped when the 
number of cycles reached 5⋅106 with specimens without any fatigue crack, which corresponds to 
σa=σa

*=175.4 MPa. The same assumption was done in the determination of the probability 
distribution Pf, thus Pf(σa<σa

*) = 0 (Fig. 1a). 
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Fig. 1. (a) Simulated two-dimensional distribution of failure probability Pf for the element made of 
18G2A steel (p=580); (b) Fatigue reference curve σa-Nf with experimental points and fatigue scatter 
bands for Pf=0.05 and Pf=0.95 (p=580) 

Crossing the two-dimensional distribution Pf(σa, Nf) by a horizontal plane Pf=const., the fatigue 
S-N curve σa-Nf for Pf=const. probability is obtained. An important point is to realize that the 
conventional reference curve σa=Nf obtained by fitting experimental data with the least square 
technique tests corresponds to Pf ≈ 0.63 if the probability distribution expressed by Eq. (7) is 
assumed. 

Implementation of the two-dimensional probability distribution for fatigue life calculations 

Let us assume that the cracks occurring on the free surface of the element are responsible for failure 
(ω = A and Ω0=A0 in Eq. 6). If the parameters of two-dimensional probability distribution (Eq. 6) 
are known, the procedure of the fatigue life assessment for a structural element with heterogeneous 
stress distribution is as follows:  

• The free surface of the considered element is divided into sub domains of sizes A(i) which 
allows appropriate integration process (Fig. 2a). 

• In each sub domain A(i) multiaxial stress state )()( ti
klσ  (where k, l are tensorial indexes) is reduced 

to an equivalent stress amplitude )(i
eqaσ  (where eqa means the equivalent amplitude) state by using 

a multiaxial fatigue crack initiation criterion.  
• The equivalent stress amplitude )(i

eqaσ  and the fatigue reference S-N curve σa-Nf are used for 
calculating the number of cycles to failure )(i

fN  for each sub domain A(i) (Fig. 2b). Then, the 

survival probability distribution )(i
sP  is determined (Fig. 2b) as follows 
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• For each fatigue life N, exponents of the natural logarithm are summed over all the sub domains 
A(i) and the survival probability distribution Ps(N) for the whole structural element is obtained. 

• The fatigue life calculation Ncal is performed for Pf(Ncal)=0.63. Fatigue life for any other 
probability level, i.e. the scatter of results, can be calculated in a similar way.  
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Fig. 2. (a) The separated sub domains A(i) of the element, (b) distributions of survival probability )(i
sP

of particular sub domains against the fatigue reference curve 

Identification of the parameters of two-dimensional failure probability distribution 

Taking advantage of empirical analytic equation of the reference curve σa-Nf, the two-dimensional 
distribution (Eq. 6) has only two parameters to be identified, i.e. A0 and p. The reference surface 
area A0 is the free surface area of the specimen applied for determination of the reference curve σa-
Nf.

The parameter p responsible for the distribution of fatigue life scatters can be determined from 
the tests of specimens having the same distribution of defects (kind and morphology) as the 
considered element. However, manufacturing qualities of elements and specimens are usually 
different. In such a case, distribution parameters should be fitted based on one series of tests of a 
real element subjected to simple fatigue loadings. Such procedure was applied, for example, by 
Delahay and Palin-Luc [11] for identifying the parameters of the fatigue limit probability 
distribution. In the present paper, the authors applied different values of the parameter p to find the 
best correlation between experimental fatigue lives Nexp and the calculated fatigue lives Ncal.

The experimental tests and results 

Experimental results obtained from testing two steels and different specimen geometries were used 
for analyzing and verifying the proposed probabilistic method.  

In the first experiments, cruciform specimens made of 18G2A steel (Fig. 3 and Table 1) with a 
central hole as stress concentrator were subjected to biaxial fatigue loading. The experiments were 
performed with the cooperation of a few researchers from Opole University of Technology; the 
original results are published in [14]. 

Cyclic properties of the tested steel, i.e. relation between the number of cycles to failure Nf and 
the stress amplitude σa as well as parameters of the cyclic hardening curve are given in Table 1 from 
tests on smooth specimens. The fatigue tests on notched specimens (Fig. 3) were carried out under 
force control with: Fx(t)=Fxasin(2πft), Fy(t)=Fyasin(2πft-δ) with the same frequency on each 
direction (f = 13 Hz) and similar amplitudes Fxa and Fya with a phase shift δ=180o (Tab. 2). Table 2 
contains also the numbers of cycles to crack initiation Ni corresponding to the crack length ai. The 
crack length ai is the length of the first registered crack. The crack lengths were identified from 
pictures made with an optical microscope (magnification 7x) and a digital camera 
(0.0085 mm/pixel). The pictures of specimen surface near the hole were periodically taken in order 
to detect number of cycles Ni when crack initiation occurs and to analyse the crack growth rate. 

1820



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

  
Fig. 3. Geometry of a cruciform specimen in 18G2A steel 

Table 1. Cyclic properties of 18G2A steel under fully reversed tension on smooth specimens 
( ) σ

σσσ m
fafa NN /1= ( ) '/1' n

a
p
a Kσε = A0

σaf, [GPa] mσ Nσ, [cycles] K’, [MPa] n' [mm2]
204 8.32 1.426�106 1323 0.207 1256 

Indices: af – fatigue limit, a – amplitude, p – plastic part 

Table 2. Test conditions and results 
Specimen d, [mm] h, [mm] Fxa, [kN] Fya, [kN] Ni, [cycles] ai, [mm]

P02 3.0 1.40 13.30 13.10 39700 0.22 
P03 3.0 1.54 13.50 13.30 31100 0.37 
P04 3.0 1.86 13.55 13.30 60048 0.07 
P05 2.5 1.50 10.21 9.90 246695 0.25 
P07 3.0 1.75 11.20 10.80 140700 0.20 
P08 2.4 1.20 9.30 9.10 167050 0.10 

The second set of experimental results were taken from the work of Fatemi et al. [15]. The 
circumferentially notched round bar (Fig. 4) made of vanadium-based micro alloyed forged steel, in 
both the as-forged (AF) and quenched and tempered (QT) conditions were subjected to tension-
compression loading. In the AF condition two notch radius were tested R=0.529 mm or 
R=1.588 mm which generate the following stress concentration factors in tension Kt = 2.8 and 
Kt = 1.8, respectively. Under the QT condition only one specimen geometry with notch radius 
R=1.588 mm (Kt = 1.8) was tested. The properties of the reference curve are presented in Table. 3. 

The fatigue life of the notched and smooth (reference) specimens were defined as the number of 
cycles endured until the specimen failure in two parts. However, observations carried out with a 
traveling microscope (magnification 30x) shows that macro-crack growth life was not a significant 
part of the total life. Therefore, the number of cycles up to crack initiation could be assumed equal 
to the total fatigue life. 

  
Fig. 4. Geometry of a round notched specimen, where R=0.529 mm (Kt=2.8) or R=1.588 mm 
(Kt = 1.8) from [15]. 
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Table 3. Cyclic properties of AISI 1141 steel in two conditions: (AF) and (QT) 
c

ff
b

ffa NNE )2(')2(/' εσε += '/1)'( n
a

p
a Kσε = A0

State E, [GPa] 'fσ , [MPa] 'fε b c K’, [MPa] n' [mm2] 
AF 200 1296 1,026 -0,088 -0,686 1205 0,122 162 
QT 212 765 1,664 -0,041 -0,704 1133 0,134 162 

Numerical simulations and results 

The strain and stress distribution in the specimens were calculated using the 3D finite element 
analysis COMSOL software with an elastic-plastic constitutive model [16]. In all the computations, 
a cyclic constitutive model with linear kinematic hardening was applied. The material hardening 
was identified from the cyclic hardening curve (from half-life hysteresis loops) expressed by the 
Ramberg-Osgood ( ) '/1' n

a
p
a Kσε =  relationship. The plasticity condition was defined by the conventional 

Huber-Mises-Hencky hypothesis. The Lagrange elements (tetrahedrons) of order 2 with a high mesh 
density in the vicinity of the notch were used in the computations. 

The criterion of maximum normal stresses (cruciform specimens) or strains (round specimens) 
on the critical plane was assumed as the criteria of multiaxial fatigue failure. The equivalent stresses 
or strains are calculated according to the following equations 

jiijneqjiijneq nntttnnttt )()()(,)()()( εεεσσσ ==== , (8) 

where ni is the unit normal vector to the plane experiencing the maximum normal stress )(max
,

tnt
σ

n
 or 

strain )(max
,

tnt
ε

n
. Surfaces of the finite elements were understood as sub domains A(i) described in 

paragraph 3. Fatigue lives to crack initiation Ncal were calculated for three probability levels: 
Pf={0.05; 0.63; 0.95} and for different values of the parameter p. The upper Pf=0.95 and lower 
Pf=0.05 bands of failure probability are marked by plus (+) in Fig. 5. The fatigue life for the failure 
probability Pf=0.63 is indicated by filled marker (• or ♦). Additional scatter band (×2.0) around the 
solid line Ncal=Nexp of perfect results consistency is also shown in Fig. 5. For 18G2A steel the best 
fatigue lives correlation is attained for p = 580 (Fig. 5a). For AISI 1141 steel in both condition (AF) 
and (QT) the best agreement between the calculated and experimental fatigue lives is obtained for 
p = 340 (Fig. 5b). It must be noted that independently on the notch radius R (Fig. 4) and specimen 
state (AF) or (QT) the best agreement between Nexp and Ncal is obtained for a single value of p=340. 
Since the surface quality of all specimens is similar in these cases, the obtained results are in 
agreement with assumption that p coefficient is a manufacturing quality factor.  
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Fig. 5. Comparison of the experimental fatigue lives Nexp with the calculated lives Ncal for (a) 
cruciform specimens in 18G2A steel with p = 580 and (b) round specimens in AISI 1141 steel with 
p = 340 
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Conclusions 

The authors proposed a procedure for determining the two-dimensional failure probability 
distribution Pf-N-σ of structural metallic elements and its application for the calculations of the 
fatigue life of such elements. The presented approach allows calculating fatigue life at any requested 
probability levels. The presented probability distribution according to Eq. (6) has a general form; it 
could be used for different fatigue damage parameters (stress, strain or energy). Generally, the paper 
presents the two-dimensional distribution Pf – fatigue life – fatigue damage parameter.  

The calculated fatigue life Ncal is in good agreement with experimental fatigue life for notched 
round specimens made of AISI 1141 steel (with p=340) and for the notched cruciform specimen 
made of 18G2A steel (with p=580). 

The proposed probability distribution function (Eq. 6) to fatigue crack initiation needs to 
determine only one additional parameter p. Such a simple form is suitable for the considered two 
types of notched specimens. However, it should be expected that other elements made of the same 
steels but with different quality (manufacturing process) would reveal other values of parameter p.
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