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Abstract.  
The materials used for the components of fuel cell vehicles(FCVs), and stationary fuel cell(SFC) 
systems, equipment for hydrogen stations, hydrogen pipilines and transport systems are directly 
exposed to high-pressure hydrogen. To realize these technologies, a particularly difficult scientific 
problem termed “hydrogen embrittlement(HE)” must be solved. Although the term HE has been 
widely used to describe the phenomenon, no unifying theory has been established and little work has 
been directed towards understanding the mechanisms in cyclic loading..  

The present paper overviews the recent progress on HE obtained at HYDROGENIUS. 

Most research on HE over the past 40 years has paid insufficient attention to two points that are 
crucially important in the elucidation of the true mechanism. One is that, in most studies, the 
hydrogen content of specimens was not directly measured. Second, detailed studies that have 
quantified the influence of hydrogen on fatigue crack growth behaviour, based on microscopic 
observations are very rare; most studies have only examined the influence of hydrogen on tensile 
properties. 

The present paper shows several important phenomena obtained by investigations of the effect of 
hydrogen on fatigue crack growth behaviour, including the measurement of the hydrogen content in 
various materials such as low-carbon, Cr-Mo and stainless steels. Particularly important phenomena 
are the localization of fatigue slip bands, strain-induced martensite in types 304, 316 and even 316L, 
and also strong frequency effects on fatigue crack growth rates. For example, with a decrease in 
frequency of fatigue loading down to the level of 0.2Hz, the fatigue crack growth rate of a Cr-Mo 
steel is accelerated by 10-30 times. The same phenomenon also occurs even in austenitic stainless 
steels at the frequency of the level of 0.001Hz. Striation morphology is also influenced by hydrogen. 

These detailed observations and measurements have allowed us to make quantitative estimates of the 
effect of hydrogen on cyclic crack growth.   

Introduction

In order to enable the “hydrogen society (or hydrogen economy)” in the near future, a number of 
pressing technical problems must be solved. One important task for mechanical engineers and 
material scientists is the development of materials and systems which are capable of withstanding the 
effects of cyclic loading in hydrogen environments. In the past much research has been concentrated 
on the phenomenon known as hydrogen embrittlement [1-3]. Hydrogen effects on slip localization 
[2-4], softening and hardening [4-12], hydrogen-dislocation interactions [12-14] and creep [15] have 
been also reported. However, most research on HE over the past 40 years has paid insufficient 
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attention to two points that are crucially important in the elucidation of the true mechanism. One is 
that, in most studies, the hydrogen content of specimens was not directly measured. Second, detailed 
studies that have quantified the influence of hydrogen on fatigue crack growth behaviour, based on 
microscopic observations are very rare; most studies have only examined the influence of hydrogen 
on tensile properties[16-33]. In order to produce components which must perform satisfactorily in 
service for up to 15 years, there is an urgent need for basic, reliable data on the fatigue behaviour of 
candidate materials in hydrogen environments. 

Two typical fuel cell (FC) systems are the stationary FC system and the automotive FC (Fuel Cell 
Vehicle, FCV) system. In the FCV system, many components such as the liner of high pressure 
hydrogen storage tank, valves, pressure sensors, hydrogen accumulators, pipes, etc, are exposed to 
high pressure hydrogen environment for a long period up to 15 years. Sufficient data have not been 
obtained on the content of hydrogen which diffuses into metals during a long period of exposure to 
hydrogen. “How much hydrogen is contained in components in the fuel cell related system?” is a very 
important question. But this question is difficult to answer.  

Figure 1 shows the hydrogen content in three steels which were exposed to 76-78MPa hydrogen 
for 100hrs at 110°C. We need to know not only the hydrogen content but also the effect of hydrogen 
content on fatigue properties. The effect of hydrogen on fatigue properties of metals is different 
depending on materials, i.e. microstructures. 
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The effect of hydrogen on high cycle fatigue was discovered by chance in course of the research to 

study the elimination phenomenon of the conventional fatigue limit in high strength steels. In high 
strength steels cycled into the very high cycle range fatigue cracks are often initiated at sub-surface 
inclusions. In 1998 Murakami et. al. [34, 35] pointed out that in these steels, hydrogen trapped by 
nonmetallic inclusions can play a crucially important role in the early stages of the fatigue crack 
growth process. Observations made with the aid of an optical microscope of the fracture origin 
revealed that an Optically Dark Area (ODA) was present around inclusions, as shown in Fig. 2. The 
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in SUS304 and SUS316L exposed to high-pressure hydrogen. 
 

Fig. 1� The effect of hydrogen entry behaviour into stainless steels[39] 
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hydrogen trapped by the inclusion at fracture origin was clearly quantified by the Secondary Ion Mass 
Spectrometry (SIMS)[36] and the tritium autoradiography[37].  

In the present paper, the fatigue properties obtained in hydrogen environments of several steels 
which are candidate materials for use in fuel cell (FC) systems are presented. In addition, a number of 
interesting aspects of the effect of hydrogen on fatigue properties and fatigue mechanisms will be 
discussed.

 

Inclusion

ODA

Fig. 2 Optical micrograph of the fracture origin (SCM435, �a = 561 MPa, Nf =1.11×108). 
ODA: Optically Dark Area[34,35] 

I. MATERIALS AND EXPERIMENTAL METHODS 

A. Materials and specimens. The materials used in this study are a Cr-Mo steel JIS SCM435 and 
round bars of two kinds of austenitic stainless steels (Type 304 stainless steel and Type 316L stainless 
steel).  Table 1 shows the chemical compositions and the Vickers hardnesses (Load: 9.8 N) of these 
materials.  The round bars of Type 304 and Type 316L were solution-heat-treated.  The 
solution-heat-treatment was performed by water-quenching after keeping temperature at 1050 °C for 
2 min. for Type 304 and 10 min. for Type 316L.  The non-diffusible hydrogen content of the 
solution-treated specimen is 2.2 wppm for Type 304 and 2.6 wppm for Type 316L.  Hydrogen 
contents were measured by the thermal desorption spectrometry (TDS) using a quadruple mass 
spectrometer.  The measurement accuracy of the TDS is 0.01 wppm.  However, non-diffusible 
hydrogen has not previously been suspected as the cause of hydrogen embrittlement.  Figures 3 (a) 
and (b) show the fatigue specimen dimensions and the dimensions of the small hole which was 
introduced into the specimen surface.  After polishing with #2000 emery paper, the specimen surface 
was finished by buffing using colloidal SiO2 (0.04 �m) solution.  A small artificial hole, 100 �m 
diameter and 100 �m deep, was drilled into the specimen surface as a fatigue crack growth starter.  In 
the hydrogen-charged specimens, the specimen surface was buffed after hydrogen charging, and the 
hole was then introduced immediately.  

Table 1  Chemical composition (w%, *wppm) and Vickers hardness HV   
 C Si Mn P S Ni Cr Mo Cu H* HV 
SCM43
5 
304 
316L 

0.37 
0.06 

0.019 

0.18
0.36
0.78

0.78 
1.09 
1.40 

0.025
0.030
0.037

0.015
0.023
0.010

0.09
8.19

12.08

1.05
18.66
17.00

0.15
- 

2.04

0.1  
2.2 
2.6 

330 
176 
157 

Fig. 3 Dimensions of the fatigue test specimen and drilled hole 
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The amount of martensite at the specimen surface, and at the fracture surfaces, of austenitic steel 
specimens was measured by the X-ray diffraction method, using monochromatic Cr K� radiation.  
The martensite content was evaluated by the ratio of the integrated intensity of the {220}austenite peaks 
and the {211}martensite peaks.  The amount of martensite before fatigue testing in the Type 304 and 
Type 316L specimens was approximately 3 % at most.  It should be noted that the amount of 
martensite measured by the X-ray diffraction method also includes the amount of �-ferrite. 

B. Method of hydrogen charging. Hydrogen was charged into the specimens of SCM435 by 
soaking them in a 20% ammonium thiocyanate solution (NH4 SCN). Hydrogen charging into the 
specimens of stainless steels was carried out either by cathodic charging [38] or by exposure to high 
pressure hydrogen gas.  The high pressure hydrogen gas exposure was carried out in 63 MPa 
hydrogen gas at 110 °C for 91 h.  The high pressure hydrogen gas was produced by the method 
developed by Mine et al.[39] using the hydrogen absorption and desorption process of a metal 
hydride. 

C. Method of fatigue testing. Fatigue tests of the hydrogen-charged and uncharged specimens 
were carried out at room temperature in laboratory air.  The fatigue tests for SCM435 were conducted 
at a stress ratio R = �1 and at a testing frequency between 0.02 Hz and 20 Hz.  

The fatigue tests for stainless steels were conducted at a stress ratio R = �1 and at a testing 
frequency of 1.5 Hz by tension-compression cyclic loading (sine wave).  Fatigue tests at very low 
frequency were carried out to investigate the effects of hydrogen and test frequency on fatigue crack 
growth.  In the very low frequency fatigue tests, the fatigue tests were first carried out at 1.5 Hz, until 
the fatigue crack length 2a reached 200 �m, followed by testing at 0.0015 Hz (11 min/cycle).  The 
replica method was used for the measurements of crack length, and for the observation of crack 
growth behaviour.  Following the fatigue tests, in order to measure the hydrogen content remaining in 
specimens, 0.8 mm thick disks were immediately cut from each specimen, under water-cooling.  
Then, hydrogen contents of disks were measured by TDS.  Measurements were carried out up to 
800 °C at a heating rate of 0.5 °C/s.  It was confirmed that cutting disks from a specimen did not affect 
hydrogen content of disk sample[38]. 

II.  RESULTS AND DISCUSSION 

II-1 Effect of Hydrogen on Fatigue Behaviour of Cr-Mo steel SCM435
Cr-Mo steel: JIS SCM435 is a candidate material for the hydrogen storage cylinder of hydrogen 
station equipped with 35MPa hydrogen supply to FCV. The effect of hydrogen on fatigue crack 
behaviour of SCM435 was investigated in details by H. Tanaka et al [40]. In this paper, a part of their 
work will be introduced. 

Figure 4 shows the relationship between crack length a and number of cycle N under the tension- 
compression stress amplitude �a = 600 MPa. The fatigue crack growth rate da/dN of the hydrogen 
charged specimens is much higher than the uncharged specimens. Another important point is that 
da/dN increases with decreasing test frequency. It is presumed that there is sufficient time for 
hydrogen to diffuse and concentrate at crack tip under low test frequency. 

Figure 5 shows the relationship between da/dN and stress intensity factor range �K. Figure 6 
shows the relationship between the acceleration of crack growth rate defined by the ratio of da/dN 
with hydrogen to da/dN in air and the test frequency f. The most important result in Figure 5 is that 
da/dN at �K < 17MPa �m (da/dN =1.0�10-8m/cycle -1.0�10-7m/cycle) and f < 2Hz for  the 
hydrogen charged specimens are merged into one line regardless of the value of f and the crack 
growth rates under these conditions are 30 times higher than those for uncharged specimens.  

This frequency tendency can also be confirmed by Fig. 6. This tendency can be explained as 
follows. At very low crack growth rate da/dN <1.0�10-7m/cycle, hydrogen has sufficient time to 

28



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic 

diffuse into the crack tip process zone, because the location of crack tip does not move so much 
distance toward the direction of crack extension and the crack tip stays inside the process zone until 
hydrogen concentrates. On the other hand, for da/dN >1.0�10-7m/cycle, it is presumed that crack 
passes the process zone at crack tip before hydrogen concentrates and the rate of acceleration of 
da/dN varies depending on test frequency. However, regardless of the values of frequency, da/dN of 
hydrogen charged specimens gradually merges to the line of da/dN of uncharged specimens at higher 
value of da/dN, because crack grows much faster than hydrogen diffusion to crack tip. Thus, the crack 
growth rate and hydrogen effect are mutually coupled. 

The dotted line of Fig. 5 shows approximately 30 times acceleration of fatigue crack growth rate in 
presence of hydrogen and can be considered to be the upper bound of hydrogen effect which should 
be used for the fatigue life prediction design of hydrogen storage cylinder. 

Fig.4 Relationship between crack length 2a and 
number of cycles N. 	a = 600 MPa. 

 Material: SCM435 
 (H. Tanaka, et al[40])
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Figure 7 shows the crack shapes and slip bands morphologies. The crack of the hydrogen charged 
specimen looks thinner than the uncharged specimens. The crack paths of the hydrogen charged 
specimens tested under f = 0.2 and 2Hz are relatively more linear than those of the uncharged 
specimens and also that of the hydrogen charged specimen tested under f = 20Hz. The crack tip of the 
uncharged specimen has many slip bands spreaded broad beside the crack line. On the other hand, the 
slip bands of the hydrogen charged specimens are localized only at very narrow area beside the crack 
line. Kanezaki, et al [38] reported the same slip localization at crack tip and linear crack path in the 
fatigue of hydrogen charged austenitic stainless steels. 

In order to make clear the mechanism of slip bands localization and linear crack path more in 
details, the following fatigue tests were carried out. 

1. First, the fatigue test was carried out at f = 2Hz and the crack growth behaviour was observed 
by the replica method. 

2. Second, the test frequency of the fatigue test was switched to f = 0.02Hz and the crack growth 
behaviour was observed by the replica method. 

These two step fatigue tests were repeated and the variation of the crack growth behaviour by 
switching the test pattern from 1 to 2 was observed. The results of these tests were very interesting as 
described in the following. 

Figures 8(a) and (b) show the overall crack growth paths. The crack path of the uncharged 
specimens is monotonic and show no particular variation even after switching the test frequency from 
f = 2Hz to 0.02Hz and also from 0.02Hz to 2Hz. The monotonic moderate curving of the crack of Fig. 
8(a) is caused by the growth of plastic zone size due to increase in a, i.e. 
K. Namely, the plane stress 
condition is gradually satisfied and the crack extension by shear mode ahead of crack tip becomes 
dominant near specimen surface. 

However, the crack of the hydrogen charged specimen for 
K >40MPa�m, the influence of 
switching the test frequency appears very clearly in the variation of slip bands morphologies and 
crack path. The crack grows in the inclined direction under f = 2Hz, though the crack grows straight 
under f = 0.02Hz. Figure 8(c) is the magnification of the localization of slip bands in the region of f = 
0.02Hz. As shown by the marks � and � in Fig. 5, the da/dN under f = 0.02Hz in this region (�) is 
approximately 10 times faster than da/dN under f = 2.0Hz. The cause for the difference between the 
inclined crack growth for f = 2Hz and the linear crack growth for f = 0.02Hz can be interpreted as 
follows.�
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(a) Uncharged specimen, 	a = 600 MPa, f = 20 Hz � �  � (b) Hydrogen-charged specimen, 	a = 600 MPa, f=20 Hz
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(c) Hydrogen- charged specimen, 	a = 600 MPa, f = 2 Hz    �(d) Hydrogen-charged specimen, 	a = 600 MPa, f = 0.2 Hz
 

Fig.7 Slip bands and fatigue cracks in uncharged and hydrogen-charged specimens at �K�20 MPa�m. 
Material: SCM435        (H. Tanaka, et al [40])  
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(a) Crack path in the uncharged specimen. 
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(b) Crack path in the hydrogen-charged specimen. 
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(c) Crack path and slip bands in the hydrogen-charged specimen 

 
Fig.8 Fatigue crack path and slip bands for the test with two frequencies of 0.02 Hz and 2 Hz at �a = 600 MPa, 

Material: SCM435    (H, Tanaka, et al [40]) 

 

 
As explained with respect to Fig. 7, hydrogen influences the localization of slip band and 

decreases the plastic zone size at crack tip. As the test frequency f decreases, this hydrogen effect is 
enhanced, resulting the plane strain condition with smaller plastic zone size even at high 
K. 

Thus, the inclined crack growth behaviour under f = 2Hz in Fig. 8(b) and (c) is due to large plastic 
zone size with less hydrogen effect which is almost similar to the case of Fig. 8(a). It must be noted 
that these inclined cracks are made by shear mode fracture and are inclined to specimen surface. 

II-2 Effect of Hydrogen on Fatigue Behaviour of Austenitic Stainless Steels [38,41] 

A. Hydrogen entry into austenitic stainless steels. Figure 9[41] shows the hydrogen desorption 
spectra for an uncharged Type 316L specimen (curve A), and for a hydrogen-charged specimen 
(curve B).  The height of the peak at around 300 °C, which indicates diffusible hydrogen, shows an 
increase due to hydrogen charging.  On the other hand, the height of the peak at around 400 °C, which 
indicates non-diffusible hydrogen, shows that there is no significant difference between the 
hydrogen-charged and uncharged specimens.  It should be noted that 2.6 wppm non-diffusible 
hydrogen is contained even in the uncharged Type 316L.  Although the data are not shown in the 
figure, the hydrogen desorption spectra for Type 304 were similar to those for Type 316L.  The 
uncharged Type 304 specimen contained 2.2 wppm non-diffusible hydrogen. 

The hydrogen content distributions from the surface to below the surface were measured by the 
method developed by Kanezaki et al. [38].  Figure 10[38] shows the hydrogen content distributions for 
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austenitic stainless steel specimens hydrogen-charged for 672 h at 50 °C by cathodic charging.  It can be seen 
that hydrogen diffused only into a very thin surface layer (100 ~ 200 �m) in the austenitic stainless steels.  High 
hydrogen content existed only in the thin 100 �m surface layer.  Depending on the stainless steel grade, the 
hydrogen content in this layer varied from 10 ~ 60 wppm. 

Fig. 9 Hydrogen thermal desorption spectrum of 
Type 316L[41] 

Fig. 10 Hydrogen content distributions of hydrogen- 
 charged specimens of three austenitic stainless 

steels. Charging method: Cathodic charging[38]
 

B. Effect of hydrogen on fatigue crack growth in solution-treated austenitic stainless 
steels;Results obtained by conventional fatigue testing. Figure 11[38] shows the fatigue crack growth 
curves starting from a hole in the uncharged and hydrogen-charged specimens of SUS304, SUS316 and 
SUS316L.  The hydrogen content values in this figure were measured immediately after the fatigue test by 
TDS.  For both SUS304 and SUS316, the increased fatigue crack growth rate due to increased hydrogen 
content is clear.  The crack growth rate in the hydrogen-charged SUS316L was only slightly higher than the 
uncharged SUS316L.    In the austenitic stainless steels, it can be assumed that hydrogen does not re-distribute 
macroscopically during the fatigue test (within 100 h) because of the very low hydrogen diffusion coefficient, 
i.e., D323K ~ 10�15 m2/s.  Thus, hydrogen loss during the fatigue test is considered to be negligible.  Smith and 
Stewart[42] carried out fatigue tests at frequencies 0.02 ~ 50 Hz and showed that fatigue crack growth of 
2Ni-Cr-Mo-V steel was more accelerated by hydrogen at the lower test frequency.  It must be noted that fatigue 
tests in the current study were performed at frequencies of 1.2 ~ 5 Hz.  The effect of test frequencies much 
lower than 1 Hz will be explained in the following sections.

 

Fig. 11  Influence of hydrogen charging on crack growth 
from 100 �m hole for austenitic stainless steels 
SUS304, SUS316 and SUS316L.  Hydrogen 
charging was carried out at 50 °C for 672 hours. 

  Charging method: cathodic charging[38] 
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 C. Effects of hydrogen and test frequency on fatigue crack growth. Figure 12(a) and (b)[41] 
show the relationship between the crack length, 2a, and the number of cycles, N, for Type 304 and 
Type 316L specimens.  The hydrogen contents of the hydrogen-charged specimens, which were 
measured immediately after fatigue tests, are also included in the figure.  The crack length is defined 
by adding the initial hole diameter.  Figure 12(c) [41]shows the relationship between the fatigue crack 
growth rate, da/dN, and the stress intensity factor range, 
K, for Type 316L.  In Type 316L tested at a 
frequency of 1.5 Hz, there was no pronounced difference between the hydrogen-charged specimen 
and the uncharged specimen.  The fatigue crack growth rates of the hydrogen-charged Type 316L, 
tested at the frequency f = 0.0015 Hz, were 2 to 3 times higher than those of Type 316L tested at f = 
1.5 Hz.  In particular, in the 
K range from 8 to 10 MPa·m1/2, the increase in the crack growth rate was 
remarkable.  Surprisingly, the uncharged specimen also exhibited an obviously definite crack growth 
rate increase as the test frequency decreased from 1.5 Hz to 0.0015 Hz. 

The crack growth rates of both the hydrogen-charged and uncharged specimens of Type 316L, 
tested at a frequency of 1.5 Hz, are expressed by 

27.311 )(1036.1/ KdNda 
�� 
  for 7 MPa·m1/2 < 
K < 25 MPa·m1/2 (1) 

On the other hand, the crack growth rates of the hydrogen-charged and uncharged specimens of 
Type 316L, tested at a frequency of 0.0015 Hz, are expressed by 

52.311 )(1078.1/ KdNda 
�� 
  for 7 MPa·m1/2 < 
K < 9 MPa·m1/2 (2) 

                    and 

91.211 )(1026.6/ KdNda 
�� 
  for 9 MPa·m1/2 � 
K < 25 MPa·m1/2 (3) 

In the range of 
K < 9 MPa·m1/2, the crack growth rate is slow and it is presumed that there is 
sufficient time for hydrogen to concentrate in the vicinity of crack tip during one cycle at a frequency 
of 0.0015 Hz.  Hence, both the values of m and C in Eq. (2) have larger values than those in Eq. (1).  
On the other hand, in the range of 
K > 9 MPa·m1/2, the fatigue crack growth rates of the 
hydrogen-charged and uncharged specimens, tested at a frequency of 0.0015 Hz, gradually increased 
and approached to those tested at a frequency of 1.5 Hz, though the value of C in Eq. (3) is larger than 
that in Eq. (1) and the value of m in Eq. (3) is smaller than that in Eq. (1).  

In Type 304 as well as in Type 316L, the uncharged specimen exhibited a definite frequency effect.  
As the test frequency decreased from 1.2 Hz to 0.0015 Hz fatigue crack growth rates increased (Fig. 
12(a)). 

 

Fig. 12 Influence of  hydrogen and test frequency on crack growth from 2a = 200�m, of (a) type 304(�= 280MPa),  
(b) type 316L(�= 280MPa), and (c) effect of hydrogen and test frequency on crack growth rate of type 316L[41] 
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Figure 13[41] shows micrographs of fatigue cracks taken by the replica method for Type 304 
specimens.  For Type 304 tested at a frequency of 1.2 Hz, the fatigue crack in the hydrogen-charged 
specimen grew straighter than did that in the uncharged specimen.  Slip bands in the 
hydrogen-charged specimen were more localized, in the vicinity of crack tips, compared to those in 
the uncharged specimen, which was tested at the same stress level, as shown in Fig. 13(a) and (c).  
Even for the uncharged Type 304 specimen, slip bands localization in the crack tip vicinity was 
observed in the low frequency test (f = 0.0015 Hz), although the extent of the slip localization was 
less pronounced than for the hydrogen-charged Type 304 specimen (f = 1.2 Hz, Fig. 13(c)).  Although 
the fatigue test for hydrogen-charged Type 304 at a frequency of 0.0015 Hz was not carried out, the 
result can be easily predicted from the data of the Type 316L shown in Fig. 12.  The slip bands in 
hydrogen-charged Type 304 tested at a frequency of 0.0015 Hz will be at least similar to that tested at 
a frequency of 1.2 Hz, or will be more localized than that tested at a frequency of 1.2 Hz, because, in 
the fatigue test at a frequency of 0.0015 Hz, there is sufficient time for hydrogen to concentrate in the 
vicinity of crack tip during one cycle.  

Fig. 13 Difference in crack growth behavior between hydrogen-charged specimens and uncharged speimens of  type 
304 (�=280MPa): (a) uncharged (f = 1.2Hz, 2a = 782�m, 2.2wppm), (b) uncharged (f = 0.0015Hz, 2a = 
778�m, 2.2wppm), and (c) H-charged (f = 1.2Hz, 2a = 801�m, 3.7wppm) [41]. 

 
The authors’ previous researches [38] have indicated that strain-induced martensitic 

transformation at the crack tip could be considered to be one of the main causes of crack growth rate 
increase due to hydrogen.  Martensitic transformation must be considered as a crucial factor in the 
enhancement of hydrogen induced fatigue crack growth rate increases.  In this regard, the authors 
measured the volume fraction of martensite on the fracture surfaces of Type 304 and Type 316L 
specimens tested at a frequency of 0.0015 Hz.  The volume fraction of martensite was determined by 
the microscopic X-ray diffraction technique.  Strain-induced martensitic transformation occurred on 
fracture surfaces at both test frequencies: f ~ 1.5 Hz and 0.0015 Hz.  It should be noted that even in 
Type 316L, which had previously been thought extremely difficult to transform to martensite at 
ambient temperature, martensitic transformation took place at fatigue crack tips.  It should be also 
noted that martensitic transformation was detected only at the fatigue fracture surface and not at other 
places such as specimen surface even in Type 304. 

D. Effects of hydrogen on striation formation. The authors have reported that hydrogen 
decreased the area fraction of fatigue striations on the fatigue fracture surface in Type 304, and also 
that the ratio of striation height, H, to striation spacing s, H/s, was reduced for a hydrogen-charged 
specimen [38]. Taking these facts into consideration, striations observed on the fracture surfaces of 
Type 316L and Type 304 tested at the low frequency were therefore investigated. Figure 14 shows the 
topography of striations observed in the hydrogen-charged and uncharged Type 304 specimens tested 
under the same conditions. These topographies were obtained by constructing the 3D shape of 
striations by analysis of a pair of stereographic SEM images.  In the uncharged specimen each 
striation was regularly formed and roughly triangular in shape.  In the hydrogen-charged specimen, 
on the other  hand, striations were irregularly shaped, and the striation height was lower compared to � � � �
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Fig. 14 Difference in striation morphology between a hydrogen-charged specimens and uncharged speimens of  type 
304: (a) uncharged  (�=260MPa, f = 1.5Hz, 2.2wppm) and (b) H-charged (�=260MPa,� f = 1.5Hz, 
6.7wppm). The arrows in the figures indicate the crack growth directon. 

Fig. 15 Relationship between ratio of striation height H to spacing s, H/s, and stress ratio (1-R). 

that for the  uncharged specimen.  In previous work, Furukawa and Murakami et al. [43] obtained the 
topography of striations by cutting the fatigue fracture surfaces of Type 304 specimens with a 
microtome.  They found a good correlation between the ratio, H/s and the R ratio.  Figure 15 shows 
the H/s data for Type 304 in the present study, together with Furukawa and Murakami et al.’s data.  
The figure indicates that the H/s data obtained from the stereographic SEM images in this study, for 
the uncharged specimen tested at f = 1.5 Hz, had a good correlation with Furukawa and Murakami et 
al.’s data.   

Considering that the features of striation shape for the uncharged specimen, tested at the frequency 
of 0.0015 Hz, are very similar to those for the hydrogen-charged specimen (Fig. 14(b)), it follows that 
testing at the low frequency (f = 0.0015 Hz) enhances the hydrogen effect, even in the uncharged 
specimens which contain non-diffusible hydrogen at a level of 2 ~ 3 wppm. 

E. What happens if non-diffusible hydrogen is removed by the special heat treatment? Even 
in the uncharged specimens the fatigue crack growth rate is increased by decreasing the test 
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frequency down to 0.0015 Hz.  The only suspect cause of this surprising phenomenon is the effect of 
non-diffusible hydrogen, of the level of 2 ~ 3 wppm, which is unavoidably trapped in the material 
during the production process.  The non-diffusible hydrogen unavoidably contained in solution 
treated austenitic stainless steels is different from the diffusible (or reversible) hydrogen which is 
charged into a material by a hydrogen gas environment, or by electro-chemical methods.  This 
non-diffusible hydrogen has not been suspected, in previous hydrogen embrittlement studies, as a 
possible cause of hydrogen embrittlement. 

However, if this non-diffusible hydrogen can cause hydrogen embrittlement, it means that the 
hydrogen embrittlement of austenitic stainless steels can occur even in the absence of an external 
hydrogen environment. 

In order to investigate the influence of so-called non-diffusible hydrogen on fatigue crack growth, 
a special heat treatment was applied.  This is soaking Type 316L at 450 °C for 450 h, and Type 304 at 
300 °C for 600 h, in a vacuum of 6.0×10�3 Pa.  In practice this heat treatment was carried out by 
enclosing specimens, or samples, in an evacuated silica glass tube.  During the heat treatment process 
the partial pressure of hydrogen in the glass tube increases, and this prevents the removal of hydrogen 
in a specimen to below the equilibrium hydrogen content for the increased partial pressure.  Therefore, 
in order to avoid unwanted increases in the hydrogen partial pressure, a specimen was removed from 
the glass tube after heat treatment for 150 h, and the same vacuum heat treatment process was then 
repeated in 150 h increments.  Fatigue testing was carried out using specimens which were prepared 
using the special heat treatment.  The specification for this special heat treatment was determined by 
considering the temperature and time needed to avoid sensitization, and also to ensure hydrogen 
diffusion out of specimens.  This heat treatment is completely different from the so-called ‘baking’ 
which is conventionally applied to remove hydrogen introduced by processes such as welding and 
plating.  Non-diffusible hydrogen at the level of 2 ~ 3 wppm cannot be removed by the so-called 
baking. 

In this paper we call this special heat treatment Non-Diffusible Hydrogen desorption Heat 
Treatment (NDH-HT).  The effect of NDH-HT is clearly shown in Fig. 9, in which the hydrogen 
content in an ordinarily heat treated Type 316L is 2.6 wppm, and on the other hand in the sample 
subjected to NDH-HT the content is 0.4 wppm.  Thus, NDH-HT removes the hydrogen, which is 
strongly trapped at the centre (O-site) of an octahedron of the FCC lattice, where the potential energy 
is much lower than that for hydrogen trapped in the quadratic lattice of a BCC material (T-site) [44]. 

The hydrogen content after NDH-HT was measured by thermal desorption spectrometry (TDS).  
In order to check that the material structure had not been sensitized by NDH-HT the microstructure 
was etched, and this confirmed that chromium carbides did not segregate at grain boundaries.  As 
further evidence of the avoidance of sensitizing, the Vickers hardness before and after NDH-HT was 
found to be largely unchanged (for Type 304 HV = 176 before and 172 after NDH-HT, for Type 316L 
HV = 157 before and 163 after NDH-HT). 

Figure 9 shows the hydrogen emission intensity profile (Curve C), measured using TDS, for a 
specimen after NDH-HT.  As can be seen in the figure, NDH-HT substantially decreases the peak 
value of the hydrogen emission intensity profile, and the total emission is also decreased from 2.6 
wppm to 0.4 wppm. 

Figure 12 shows the fatigue crack growth behavior of NDH-HT specimens.  Fatigue tests were 
carried out at a frequency of 1.5 Hz until a crack had grown to 200 �m in length, including the hole 
diameter (100 �m), and the test frequency was then changed to 0.0015 Hz.  Surprisingly, the fatigue 
crack growth rate of an NDH-HT specimen was substantially decreased in comparison with a 
hydrogen-charged specimen, and even in comparison with an uncharged specimen.  Further evidence 
of the effect of NDH-HT was seen in the striation height-spacing ratios (H/s) which are shifted to 
higher values.  The above facts are definite proof that even the non-diffusible hydrogen contained in 
ordinary solution treated austenitic stainless steels influences fatigue crack growth rates.  From the 
result of this experiment we can identify the following two reasons for the increase in fatigue crack 
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rates, at the very low test frequency of 0.0015 Hz, in solution treated uncharged specimens, which 
naturally contain hydrogen at the level of 2 ~ 3 wppm. 

(1) At a very low test frequency, of the order of 0.0015 Hz, there is sufficient time for hydrogen to 
be transported to fatigue crack tips through lattice defects such as edge dislocations.  In this case, it is 
presumed that the probability of the movement of the hydrogen out of O-sites is increased by the 
fluctuation of the potential energy due to lattice deformation under very low stress frequencies. 

(2) As austenite at fatigue crack tips partially transforms to strain-induced martensites, the binding 
energy between hydrogen and a trapping site is decreased, and at the same time the locally 
transformed martensites at fatigue crack tip enhances the diffusion and concentration of hydrogen 
trapped in austenites to fatigue cracks[38, 45]. 

For example, at 0.0015 Hz, with 
K = 10 MPa·m1/2 for which the plastic zone size under plane 
strain is approximately 20 �m based on simple application of the Dugdale model, during one fatigue 
cycle (11 min) hydrogen can move approximately 0.4 �m in plastically deformed austenites having a 
slightly higher diffusion rate than that for an undeformed structure, whereas it can move 
approximately 3.5 �m through transformed martensites[41].  

Thus, it is vitally important to take the effect of loading frequency into consideration for the 
prediction of fatigue lives and the safety of infrastructures and components which, in actual service, 
are used in hydrogen environments.  Current fatigue data obtained by conventional accelerated tests 
should therefore not be used for design to ensure the long term safety of hydrogen energy systems. 
Therefore, fatigue test methods must be reviewed from the viewpoints both of test frequency and of 
hydrogen content. 

F. Hydrogen-induced striation formation mechanism. Based on the data for striation shape, 
which involves information on the crack growth mechanism, we will discuss the mechanisms of crack 
tip opening, crack growth, and decrease in H/s induced by hydrogen.  We will also discuss the 
mechanisms related, not only to the mechanism of hydrogen embrittlement in fatigue, but also to the 
basic mechanism of hydrogen embrittlement in static fracture. 

The distributions of maximum shear stress and of hydrostatic tensile stress, ahead of the crack tip, 
under plane strain can be easily calculated by the elastic solution of crack.  In the case when there is 
no hydrogen, slip from the crack tip occurs in the 75.8° direction, where the shear stress has its 
maximum under plane strain.  The slip in the 75.8° direction causes both crack tip blunting and crack 
growth at the initial stage of loading.  Under a given load level crack tip blunting occurs as a crack 
grows and, finally, at the maximum load crack growth is saturated.  This mechanism has been well 
known in previous studies on metal fatigue [46-49].  On the other hand, for the case when hydrogen is 
present, Sofronis et al. [50] showed, by numerical analysis of hydrogen diffusion near the crack tip, 
that hydrogen diffuses to, and concentrates at, the region where the hydrostatic tensile stress has its 
maximum.  Tabata, Birmbaum and et al. [18] suggested, through TEM observation of the interaction 
between dislocations and hydrogen, that yield stress decreases as a function of hydrogen pressure.  
Considering their experimental result, it is therefore presumed that yield stress decreases at a region 
where hydrogen concentrates.  As a result, crack tip blunting and crack growth both occur during the 
whole load cycle.  Namely, even if crack tip blunting occurs at a given load level that is below the 
maximum load, further slip takes place at the growing crack tip where hydrogen repeatedly 
concentrates.  This further slip reduces crack tip blunting in the 75.8° direction; both crack tip 
blunting and crack growth occur in a coupled manner during the whole load cycle. As shown in Fig. 
16, the fatigue crack growth mechanism of ductile materials is based on striations formed by slip at a 
crack tip.  This differs from the static fracture mechanism of BCC metals.  However, the diffusion and 
concentration behaviour of hydrogen near a crack tip, or near a notch root, is similar in both FCC and 
BCC metals (see Appendix A).  Furthermore, with decreasing fatigue test frequency, there is 
sufficient time for hydrogen to diffuse towards crack tips, and a large amount of hydrogen 
concentrates near crack tips.  As a result, a crack continues to grow before the crack tip becomes fully 
blunt. 
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Fig. 16 Crack tip opening and striation formation mechanism in fatigue: (a) no hydrogen effect, (b) hydrogen effect, 
(c) schematic image of thick plastic zone wake produced at a crack under no hydrogen, and (d) schematic 
image of shallow plastic zone wake produced at a crack under hydrogen effect[41]. 

[49]

 
It is well known that there are three types of crack closure which control fatigue crack growth 

[51-53].  From the viewpoint of plasticity-induced crack closure [51], it follows from the above 
discussion that the amount of plastic deformation (plastic zone size) at the maximum load, Pmax, is 
smaller in the presence of hydrogen than in its absence.  Figures 16(a) and (b) illustrate the effect of 
hydrogen on the crack closure mechanism during one load cycle.  Figure 16(a-2) shows the crack 
opening behavior on the way to the maximum load in the absence of hydrogen.  The crack tip opening 
displacement reaches its saturated value at a given load level and crack growth ceases.  As shown in 
Fig. 16(b-2), however, hydrogen concentrates near the crack tip in the presence of hydrogen.  
Hydrogen concentration enhances further crack opening by slip, and crack growth continues.  Since 
the corresponding plastic zone at the crack tip does not become large, the plastic zone wake which 
remains on the fracture surface is shallow.  Figure 16(c) and (d) are schematic illustrations of plastic 
zone wakes with and  without hydrogen.  Ritchie et al. [54, 55] pointed out that the reason for the 
increase in crack growth rates of a Cr-Mo steel, in a hydrogen gas environment, is the increase in 

Keff due to the absence of oxide induced crack closure.  However, as shown in Fig. 16, hydrogen 
influences all three types of crack closure mechanisms.  In particular, the effect of hydrogen on 
plasticity-induced crack closure is crucially important for all three types of crack closure mechanism.  
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This phenomenon results both in decrease in the height of striation and in decrease in the crack 
opening load (decrease in 
Kop and increase in 
Keff). 

As has been described in the previous paragraph, a crack grows continuously during loading, in 
the presence of hydrogen, even before the crack opening displacement reaches its maximum value.  
Consequently, the crack tip shape at the maximum load is sharper in the presence of hydrogen than in 
its absence.  The effect of hydrogen on plastic deformation at a crack tip may be reduced during 
unloading.  This is because the stress field at the crack tip becomes compressive.  Nevertheless, it is 
presumed that the vertical distance between the peak and the valley of a striation becomes small.  This 
is because the crack opening displacement at the maximum load is small in the presence of hydrogen, 
even though the amount of reverse slip is the same as that in air.  This is the possible mechanism for 
the small ratio of striation height, H, to spacing s, H/s, in the presence of hydrogen. 

CONCLUSIONS
The basic mechanism of hydrogen embrittlement in the fatigue of a Cr-Mo steel JIS SCM435 and 
austenitic stainless steels, of Type 304 and Type 316L, has been made clear on the basis of the effects 
of hydrogen and load frequency on fatigue crack growth rates. The conclusions can be summarized as 
follows. 

Conclusions for a Cr-Mo steel: 
(1) With decreasing load frequency, the fatigue crack growth rate for the hydrogen charged 

specimens increased significantly. However, there is the upper bound of the acceleration of da/dN 
and it is 30 times of da/dN  for uncharged specimens. 

(2) The two step fatigue tests for different load frequencies f = 2Hz and 0.02Hz made clear the 
mechanism of slip localization and linear crack path in the fatigue of hydrogen carged specimens. The 
fatigue crack path of uncharged specimens was monotonically inclined and curved regardless of load 
frequency due to the growth of plastic zone with increasing 
���However, the fatigue crack path of 
hydrogen charged specimens changed from a inclined and curved shape to a linear and straight crack 
by switching f from f = 2Hz to 0.02Hz. This is due to the slip localization and decrease in plastic zone 
size in presence of hydrogen. 

Conclusions for austenitic stainless steels: 
(1) Although one of the major models assumed to explain hydrogen embrittlement has been the 

hydrogen decohesion hypothesis, the basic phenomenon of hydrogen embrittlement during fatigue 
loading is not caused by lattice decohesion.  The basic mechanism is hydrogen diffusion to, and 
concentration at, crack tips.  This leads to the activation of hydrogen induced slip deformation. 

(2) Fatigue crack growth rates are increased in the presence of hydrogen, and are strongly 
dependent on cyclic load frequency. The dependency on load frequency is a consequence of the very 
low hydrogen diffusion rate in austenitic stainless steels, which have the FCC structure.  The local 
and partial strain induced martensitic transformation at crack tips, which provides the hydrogen 
diffusion highway [38, 45], also contributes to the concentration of hydrogen. 

(3) The non-diffusible (irreversible) hydrogen at a level of 2 ~ 3 wppm, which is trapped at O-sites 
in the lattice of ordinarily heat-treated austenitic stainless steels, has been ignored for the last 40 years 
as an important factor causing HE.  However, it has been found in the present study that the 
non-diffusible hydrogen definitely increases fatigue crack growth rates when the loading frequency is 
reduced to 0.0015 Hz. 

(4) If the non-diffusible hydrogen is removed, down to the level of 0.4 wppm, by a special heat 
treatment, then the damaging influence of the loading frequency disappears, and fatigue crack growth 
rates are significantly decreased.  The special heat treatment (NDH-HT) is a new method of heat 
treatment, which is essentially different from conventional heat treatments such as ‘baking’.  The new 
heat treatment method will be useful to improve material resistance to HE. 
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(5) The hydrogen-enhanced localized and discrete slip at fatigue crack tips changes the mechanism 
of crack opening and closing behaviour, and as a result it particularly increases fatigue crack growth 
rates at low loading frequency.  This mechanism also produces a unique striation morphology in the 
presence of hydrogen. 
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APPENDIX A 
The hydrogen-charged specimens show a peculiar void growth inside the specimen in tensile test. 
Figure A1 shows an interesting difference of void growth behaviour between the uncharged specimen 
(Fig. A1(a)) and the hydrogen-charged specimen (Fig. A1(b)). The basic mechanism of the void 
growth lateral to tensile axis in the hydrogen-charged specimen (Fig. A1(b) and (c)) can be 
considered consistent with that of fatigue crack growth(Fig. 16). 

Fig. A1� Development of voids in tensile test of the hydrogen charged specimen of a pipe line steel, JIS-SGP  
(0.078% carbon steel)[56] 
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