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Abstract. Solids with regular structure are under consideration. Solution of nonlinear problem of 
fracture mechanics is supposed to be obtained in two steps when branching or kinking is possible 
for mode I crack. First, branch or kink angles are searched, and then, critical fracture parameters for 
chosen direction are determined. At these steps, the necessary and sufficient fracture criteria of the 
Neuber-Novozhilov type, respectively, are used. When searching critical fracture parameters 
(prefracture zone lengths and loading), the modification of the classical Leonov-Panasyuk-Dugdale 
model is used when prefracture zones occupy rectangles located along crack branches. When 
deriving simple expressions for critical fracture parameters, stress intensity factors (SIFs) for a 
crack with the infinitesimal branch are used, and SIFs for a crack with a branch are used when 
normal and shear stresses modeling the plasticity zone are given at the branch.  To construct SIFs 
for a crack with branches, the problem of uniaxial tension of a plate with crack having bisymmetric 
branching has been solved using the method of finite elements. SIFs by the modes I and II 
depending on the branch angle have been obtained. 

Introduction
Problems of steady growth of sharp cracks and their branching when a solid with the straight sharp 
crack is under some loading are of a certain interest. In the vicinity of the tip of the sharp mixed 
mode crack, a stress field occurs. Under certain conditions, bluntness of sharp cracks can take place 
because of shear stresses or deformations. In work [1], possibility for multiple crack branching is 
described that is associated with the multiplicity of eigenvalues when buckling the system. We 
should emphasize in this work that loading corresponds to I mode fracture. Relations describing the 
branching angle of crack path have been obtained when curves of the theoretical Coulomb-Mohr 
type strength are known. The crack advances along the following directions: 1) transversely to the 
direction of maximum tension in the absence of shear stresses in the vicinity of the crack tip 
(Erdogan-Sih hypothesis) when brittle material behavior takes place; 2) along the direction of 
maximum shear in the absence of normal stresses in the vicinity of the crack tip when ductile 
material behavior takes place (emission of dislocations occurs); 3) along some direction 
corresponding to the generalized stress state when quasi-brittle and quasi-ductile material fracture 
takes place. 

Fig. 1 displays a photograph adopted from the work [2]. The photograph demonstrates 
axisymmetric formation of prefracture zones in aluminium plate with a crack. Such a picture is 
observed in thin plates under full-scale plastic flow in the vicinity of the crack tips. Subsequent 
propagation of cracks takes place along the medial line of neck formation zone. 

Branching and kinking of sharp crack paths occur when the tip of a sharp plane crack rests 
against a plane interface of single crystals. This interface (low-angled boundary, for example) in 
structured material is considered as some thin solid of the regular structure with given properties. If 
a thin solid has low strength characteristic as compared with perfect single crystals, then the 
preferential crack growth coincides with single crystal interface [1]. 

574



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic 

 
 

Fig. 1. Asymmetric formation of prefracture zones in aluminium plate with crack. 

1. Description of quasi-brittle characteristic of structured material under single loading. 
Consider an inner straight sharp crack in structurally inhomogeneous material at the second 
structural level (granular material). The inner crack in isotropic ductile material is modeled by 
bilateral cut of  in length. Let normal stresses 2l ��  and tangential stresses ��  be given at infinity, 
that is, the crack is deformed in mixed mode. When the crack reaches the interface between two 
grains, branching or kinking of the crack path is possible as a result of asymmetry of strength 
material properties with respect to the crack plane. Introduce the polar coordinate system Or�  with 
the pole O at the right crack tip, the polar axis being along the crack axis. 

By � ��  denote branch (kink) angles of a crack. For 0� � � , the crack  extends steadily in 
straight direction; for 0� � 	 , kinking of the crack path takes place; for 0� �� 	 , the crack branches 
changing its direction, for / 2� 
�� � , the crack is blunted when it is opened [1]. By the type of 
fracture behavior, materials can be divided into brittle ( 0� � � ) and ductile ( / 2� 
� � � ), but quasi-
brittle ( , ) or quasi-ductile (0� � � � 0� �� 	 / 2� 
� � � , / 2� 
� � ) is also possible. 

Under gradual loading with loads ��  and ��  applied to a specimen at infinity, the complex 
stress state is realized in the vicinity of the crack tip. We will consider proportional loading 
when / constc� �� � � � . The choice of one or another way of branching or kinking of a crack path 
is conditioned by strength material characteristics. Fig. 2 displays curves of the theoretical strength 
of the Coulomb-Mohr type for two isotropic materials. The curve 1 describes a behavior of quasi-
ductile material, the curve 2 describes a behavior of quasi-brittle material. The proportional way of 
loading ( / coc nst� � � � ) is shown with ray 3, the direction of which is defined by the angle 
  on 
the plane� �� , where �  and �  are normal and shear stresses, respectively. Thus, curves 1 and 2 in 
the polar coordinate system can be written in the form ( )i if f 
�  ( i �1, 2); for isotropic material, 
we have ( ) ( )i if f
 
� �  because of satisfying the symmetry conditions. The theoretical (ideal) 
tension material strengths are denoted 1m�  and 2m�  for curves 1 and 2, respectively 
( (0)if mi�� ).The theoretical (ideal) shear material strengths are denoted by 1m� and 2m�  for curves 1 

and 2, respectively ( ( / 2)i mf i
 �� ). By *� and *� denote critical values of stresses on the given way 
of deformation. Below values with asterisk denote the critical state. 
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Fig. 2. Theoretical strength curves of Coulomb-Mohr type for two isotropic materials: curve 1 for 
quasi-brittle material, curve 2 for quasi-ductile material, ray 3 for proportional loading way 

 
Relative estimates of theoretical tension m� and shear m� strengths in limiting cases are as 

follows: 1) for materials inclined to cleavage (brittle and quasi-brittle materials), we have m m� ��  
(curve 2); 2) for materials weakly resistant to dislocation emission (quasi-ductile material), we have 

m m� ��  (curve1). 
For the proportional way of loading, we consider � �� ��  fracture assessment curves, where 

2 2� � �� ��  is the stress intensity, 2 2� � �� ��  is the deformation intensity. Fracture assessment 
curves � �� ��  can be obtained, for example, in experiments for united tension and torsion of thin-
walled pipe specimens [3]. Fig 3 shows the simplest approximation of the real � �� ��  diagram of 
quasi brittle deformation. Here *��  are the critical values of stresses; 0��  is the limiting deformation 
in the zone of elastic deformation; *�� are deformations corresponding to the beginning of fracture 
process. 

 

 
 

Fig. 3. The simplest approximation of � �� ��  diagram of quasi-brittle material deformation. 
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2. Branch angles of a crack (the necessary fracture criterion) 
Suppose the initial macrocrack is sharp and its right tip is on the interface between two grains. The 
material is supposed to be isotropic. 

Consider the strength discrete-integral fracture criterion of the Neuber-Novozhilov type [4, 5] for 
crack extension in chosen directions �� , which is defined by branch angles 

0 0
*

0 00 0

1 1( ) ( ) ( ) ( )
r r

r rr dr r dr
r r� � � �

*.� � � � � � � � �� � � � � � �� � �  (1) 

Here Or�  is a polar coordinate system, the origin of the coordinate system being coincident with 
the tip of a real crack; ( )r�� ��  and (r r� )� �� are normal and tangential stresses having integrable 

singularity; ( )�� � and ( )r�� �  are averaged normal and tangential stresses in the chosen 

directions � �� ; symbols * ( ) cosf� 
� 
  and * ( )sinf� 
� 
  are used for stresses at critical states 
(Fig. 2);  is the specific linear size of the material structure (grain diameter). Emphasize that left-
hand sides of the first and second relations (1) are functions of the angle 

0r
� , and right-hand sides of 

the same relations are functions of the angle 
 . For I mode cracks, the relation between these 
angles was derived earlier: / 2
 ��  [1]. 

For ( )�� � � �� , ( )r�� � � �� , the crack does not extend. When the averaged stresses 

( )�� � and ( )r�� �  coincide with stresses of critical states � � and � � , i.e., ( )�� � � ��  and 

( )r�� � � �� , the criterion (1) is realized in the chosen directions � ��  and then: 1) the only 

prefracture zone on the crack continuation is formed if 0� � � , 2) two prefracture zones are formed  
when the inner crack of  branches, if  2l 0� � 	 . The first case corresponds to brittle and quasi-
brittle fracture when . The second case corresponds to quasi-ductile fracture when 0� � � / 2� 
� � . 

Using the necessary criterion (1), the length of the sharp inner crack can be written in the form 
[6] 

2 2

3 20

2 ( )cos

cos 3 sin cos
2 2

l nf
r


 


2
� �� �� �

�
�

� . (2) 

Relation (2) contains the function ( )f 
 characterizing material behavior on the plane � ��  
(Fig. 2). The connection between angles 
  and �  can be written as [6] 

2

sin cos 1 3sin
2 2 2tg

cos 3 sin cos
2 2

I II

I II

K K

K K
2

� � �


 � � �

� �� �� �
� ��

�
,   
 � 
� � � , (3) 

where  and  are SIFs for the sharp inner crack at the generalized stress state. 0IK � 0IIK 	

Using relations (2) and (3), branch angles � ��  can be determined from the following relation 
[1]: ( ) min ( )l l� �� � . This relation describes just as the simple, so multiple crack branching. For 
example, for triple branching, we have 1 1 2 1 3 3( ) ( ) ( )l l l� � �� � �� � �  for 1 30, 0� �� �	 � . Such a behavior 
of the system was revealed in experiments [2]: for the left tip in Fig. 1, we have , and for 
the right crack tip in Fig. 1, we have 

0� �� 	
0� � � . Implementation of one or another direction of crack 
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extension in particular experiments [2] depends on insufficient perturbations in a material structure 
in the vicinity of the crack tip. 

Thus, a necessary criterion (1) describes the beginning of formation of the only prefracture zone 
in brittle material or two prefracture zones in quasi-brittle material and allows the angles � � of inner 
crack branching to be determined. The necessary criterion (1) can not describe lengths of 
prefracture zones. 

For the necessary criterion, corresponding averaged stresses are less than theoretical rupture and 
shear strengths. When the necessary criterion is realized, the material structure nearest to crack tip 
is in the critical state. However, when critical loading of a structure nearest to the tip is exceeded, 
the additional extra loading of solid with a crack is possible at the expense of postbuckling 
deformation of this structure and prebuckling deformation of the next structure when there are no 
damages in the vicinity of the crack tip. When the necessary criterion is realized, catastrophic 
fracture of the initial system takes place. 

3. Sufficient fracture criterion at the generalized stress state 
In order to describe a stress-strain state in the vicinity of the crack tip, we make use of the Leonov-
Panasyuk-Dugdale model [7, 8]. Introduce Cartesian coordinate system  with the origin at the 
crack tip, the Ox axis being directed along the crack axis. If solutions for stresses on the sharp crack 
continuation  are used in the continual model through SIFs 

Oxy

0y � IK and IIK , then the following 
relation for the linear problem to an accuracy of magnitudes of the highest infinitesimal order can 
be written 

I( 0) , ( 0)
2 2y xy
Kx x

x x
IIK� � � �


 
�� � � � � � � , (4) 

where �� and ��  are specific stresses given at infinity or on the contour of a bounded body; IK and 

IIK  are total SIFs, which can be given as 

I I I I I0 0K K K K K� � � �� � � � � � ,    II II II II II0K K K K K� � � � 0� � � � � � . (5) 

Here IK � and IIK �  are SIFs generated by stresses ��  and �� ; IK �  and IIK �  are SIFs generated by 
stresses *� and *� acting in the vicinity of the imaginary crack tip in the prefracture zone. 

In the classical Leonov-Panasyuk-Dugdale model, an inner straight crack of length  is 
changed by an imaginary crack-cut of length 

02l

02 2 2l l� � � , where �  is the length of loaded 
segment or the prefracture zone length, two prefracture zones being on the continuation of the 
initial crack. The scheme of force loading of the right imaginary crack tip in the generalized 
Leonov-Panasyuk-Dugdale model is given in Fig. 4, � (the crack extends rectilinearly) and in Fig 4, 
b (crack path kinking). Further, the case of quasi-brittle fracture is considered when . In the 
classical model, only normal stresses 

0/ l� �1
*� act in the prefracture zone, shear stresses ��  and *�  are 

absent. Stresses *� and *� coincide with those of critical states (Fig. 2). The total SIF IK  can not be 
negative since for , crack flanks are superimposed that is impossible physically. I 0K �

In order to describe a fracture process for branching crack in the prefracture zone, we use the 
sufficient fracture criterion [9, 10]. In Cartesian coordinate system , the origin is at the right 
crack branch tip, and the Ox  axis is directed along the branch (Fig. 4, b), the branch being at the 

Oxy
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angle � �  to the main crack plane. Thus, the prefracture zone occupies the area along the all branch 
length. Denote by  the prefracture zone length and by a  the prefracture zone width. �

 

 
 

Fig. 4. The scheme of strength loading for the right imaginary crack tip in the generalized Leonov-
Panasyuk-Dugdale model. 

 
The sufficient discrete-integral criterion of quasi-brittle fracture for a sharp crack has the form 

0 0

0 00 0

1 1( 0) ( 0) 0
r r

y xyx dx x dx x
r r

� � � �� �� � � � � � �� � ;  (6) 

I II
1 12 ( ) 2 , 2 ( ) 2 , 0

2 2
K K

G G
� � x� �� � � �

�� � � �� � � �� � �v v u u

 


. (7) 

Here ( 0)y x� �  and ( 0)xy x� �  are normal and tangential stresses on the continuation of a crack branch 
having integrable singularity;  is the averaging interval; 2 20r ( )x�v v  and 2 2 ( )x�u u  are crack 
branch opening and displacement of crack branch flanks, respectively;  and  are critical 
crack branch opening and critical displacement of crack branch flanks, respectively;  for 
plane deformation,  for the plane stress state, where 

2 �v 2 �u
3 4� �� �

(3 ) /(1 )� �� � �� � is Poisson ratio; G  is the 
shear modulus;  and  are total SIFs in the generalized Leonov-Panasyuk-Dugdale model. IK IIK

The prefracture zone length  is determined from solution of the fracture problem (6), (7) and 
the width of this zone  is found from solution of the elastic-plastic problem [11]. In Fig. 5, the 
plastic zone in the vicinity of the right crack tip is shaded, the zone diameter being equal to . 

�
a

a
Equate the plastic zone area of rectangle with sides a  and �  shown in Fig. 5. Thus, the plastic 

zone in the vicinity of the crack tip is approximated be a rectangular prefracture zone with the width 
 and length . Critical parameters a � 2 �v  and 2 �u  are found from relations 

* * * *
02 ( ), 2 (a a 0 )� � �� �� � � �v u � , (8) 

where 2 2
0 0 0( ) ( )� � �� ��  and * * 2 *( ) ( )2� � �� ��  are determined from the � �� ��  diagram (Fig. 3). 
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Fig. 5. Plasticity zone in the vicinity of the crack tip and prefracture zone. 
 
The system of the first relations for the criterion (6) and (7) is equivalent to that of the second 

relations (6) and (7) if proportional loading takes place and stress tensors are coaxial [9, 10]. As 
distinct from classical fracture criteria [7, 8, 12], in the criterion in (6) and (7), restrictions are used 

I 0K � ,   , (9) II 0K 	

and the prefracture zone width is identifiable with the plasticity zone diameter at the real crack tip. 
Below restrictions (9) are used when deriving critical fracture parameters. 

Let us elucidate how the sufficient criterion (6) and (7) is used at a crack branch. Remind that the 
angle � �  has just been determined from the necessary criterion. Let a sharp inner crack of length 

 be given, material being in the initial state ahead of the crack tip, then there is no prefracture 
zone and its length . At proportional loading 

02l
0� � / constc� �� � � � , the crack does not extend so 

long as loads 0� �� � �  are applied, where 0��  are critical stresses for sharp cracks obtained with the 
help of the necessary fracture criterion (1). When load exceeds critical stresses for the necessary 
criterion 0� �� � � , crack initiation occurs and non-elastic deformation of material in the prefracture 
zone begins, in this case ( )��� � � . Now we consider the simplest case when the prefracture zone 
is on the crack continuation, therefore, the length of a model crack is estimated as 
follows: . Relations (6) control conditions of the model crack initiation. Simultaneously 
with the prefracture occurrence, force bonds are formed in the vicinity of the model crack tip in 
compliance with the generalized Leonov-Panasyuk-Dugdale model (Fig. 4). Because of acting force 
bonds near the crack tip, steady crack growth 

02 2 2l l� � �

02 2 2l l l�� � takes place until a certain loading level 
� �

�  is reached, where � �
�  are critical stresses for sharp cracks obtained by the sufficient fracture 

criterion (6) and (7). In this case, 0� ��
� �� , 02 2 2l l� �� � �  is the critical length of a model inner 

crack,  ( )��
�� � � �  being the critical prefracture zone length. Relations (7) control conditions for 

break of force bonds acting in the prefracture zone ahead of the real crack tip. When the prefracture 
zone length  coincides with the critical value � �� , steady crack growth is changed by unsteady 
one. 

4. Critical fracture parameters 

4.1. Straightforward crack extension ( 0� � � ). Let us derive relations connecting critical 
parameters IK � , IIK � , and  for a sharp crack extending rectilinearly  in quasi-brittle �� 0� � �
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material. For critical values IK � , IIK � , and �� , relations (6) and (7) are transformed into equalities. 
For the SIF IK �  and prefracture zone length �� , and for the SIF IIK �  and prefracture zone length �� , 
the second relations from (6) and (7) are used. After appropriate transformations, we have 

 !  *0 0
I II2 2

r rK K
 
 !*� � �� � �
�� � � � �� �

� "  (10) 

2 2* *

I I

8 8
1 1

G
K K


 

� �

� �
�

� � �
� � � � � #� � �� �� � �

v

I

G
�

�
�
�

u  (11) 

For total SIFs IK and IIK  generated by stresses ��  and ��  acting at infinity, and stresses *�  

and *�  acting on a segment [ , the following expression is valid [13] 0��" ]

* *
I II

2 21 arcsin 1 , 1 arcsin 1K l l K l l
l l

� 
 � 
 � 
 � 


 
� �

$ � % $ � %� � �� � � � � � � �� � �
�
�& ' &� � � �'( ) ( )

. (12) 

The first and second relations in (10)–(12) are equivalent if proportional loading takes place and 
tensors of stresses and deformations are coaxial. Thus, two nonlinear systems of equations (10) and 
(11) are obtained with respect to IK � and ��  or IIK �  and �� . 

We obtain estimates for the prefracture zone length � . Relations (12) can be essentially 
simplified when the length of a loaded segment is much less than the half-length of the crack, i.e., 

. Since 1l�* �

2arcsin 1
2l l

� �� �� � �� �

� �
, 

then, the first relation (12) written for critical parameters is transformed into the form 

*
* * * * *
I *

2 2K l l
l

� 
 � 


�

�
� � , (13) 

where . From the first relation (11) and (13) after appropriate transformations, we get the 

quadratic equation for the dimensionless parameter 
0l l� � � ��

l�*  

2
*

* * 0
12 2

G
l l l

�
 

� � �

� � �� �� �
�� �

� �� � �
� �
� �

� �
� �

�
v

� . 

Neglecting the values of the highest infinitesimal order, we get a simple expression for the lesser 
root of the quadratic equation 

2 2
1

G
l l� �

�

� �
�

�
�

�

*v
� . (14) 
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If the restriction  is not realized, a transcendental equation for determination of 1l� �� * � l� �� *  is 
derived from relations (11) and (12). There are no specific difficulties in solving this equation if it 
has a positive root less than unity. 

The critical SIF IK �  of a sharp inner crack (13) can be written in the form 

* *
* * *
I * *

2 21K l
l

�� 


 ��

�

� ��
� ���

� �
�� . (15) 

Take into consideration the first relation from (10) and equation (15), then the fracture assessment 
curve by the sufficient criterion is written as 

1

*
0 0

241 1 l
r r

�
� 


�� �� �� �� �� �
� �� �

�� �
� �� �

� � � �

�
� � �

�
�
� . (16) 

Thus, for the case of proportional loading and coaxial tensors of stresses and deformation, the 
system of two nonlinear equations (14) and (16) with respect to critical parameters  � �� � �

�  has 
been obtained, that describes formation of the prefracture zone and fracture assessment curve for 
the complicated stress state. It is obvious that for the mode II fracture, it is expedient to use the 
equivalent system of two nonlinear equations in virtue of equivalency of the first and second 
relations in (10), (11) 

1

*
0 0

22 2 4, 1 1
1

lG
l l r r

�
� � � 


�� �� �� �� � �� �
� �� �

�� �� � �
� �� �� � � � �

� �
� � � �

�

*u �
�
� . (17) 

Compare critical loads obtained through necessary and sufficient criteria for the same crack 
lengths. From the necessary criterion (1), we have 

 !0 *0
I 2

rK 
 0� ��� � . 

Taking into account that according to (12) 0 0
I 0K l� 
�� , we get 

1
0

0
*

0

21 l
r

�
�

�� �
� �

� � �
� �
� �
� �

� � . 

For the same crack lengths , we find *
0l l�

0
0

41
r

�
� 


� �
�

�

�
� � . 

As it can be seen from the expression derived, critical loads obtained through necessary and 
sufficient criteria can essentially differ. Fig. 6 presents schematically steady (curve 1) and unsteady 
(curve 2) fragments of crack growth, as well as the fracture curve obtained through the necessary 

582



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic 

criterion [14] (curve 3). On the steady-growth fragment, new formed systems respond to increasing 
load since 0� ��

� � �  causing the crack to extend since 0l l�� . 
 

 
 

Fig. 6. Steady (curve 1) and unsteady (curve 2) segments of crack growth as well as the fracture 
curve obtained through necessary criterion (curve 3). 

 
4.2. Crack kinking and branching ( 0� � 	 ).In the reference literature there are no analytical 

solutions for stress intensity factors of the type (12) for the case of a crack with branches extending 
in quasi-brittle material. This generates a need for applying numerical methods. In this case, 
asymptotic of a stress field in the vicinity of the crack branch tip has the form 

I ˆ( 0) , ( 0)
2 2y xy
Kx x

x x
II ˆK� � � �


 

� � � � � � , (18) 

where 

2 * * * * *ˆ ˆcos sin 2 , sin cos cos 2� � � � � � � � � � �� � � �� � � � �� ��

/ 2

. (19) 

Here by dots denote singular terms stemming from crack kinking with the singularity exponent 
0 1+� � . 

In the general case, SIFs IK  and IIK  depend on * *
0, , , , ,l� � � �� � � , and *� . Here , 

and 

* *
0, , l� �

*�  are constants, ,� �� � , and �  are variable parameters, therefore, we can write 
 and . From the first relations from (6), (7) � (18), we have for 

critical values 
I I ˆ( , )K K �� � II II ˆ( , )K K �� �

2*
* * *

I * *
0 I

2ˆ ˆ( , ) 8
ˆ1 ( , )

GK
r K

� � � 


 �

� � �
�

�
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v
�

�
�

�

. (20) 

In this case, the dependence  is implicit, therefore, for solution of the system of 
equations (20), the following iteration procedure is proposed 

* * * *
I I ˆ( , )K K ��
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1 I 1 * *
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r K
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v

1�
, 

where  is iteration number. From the second relations from (6) and (7), the system of equations 
that is equivalent to (20) is derived. 

i

At each iteration, for given values �� , and � , SIFs I I ˆ( , )K K �� �  and  can 
be found by the finite element method from solution of the tension problem of a plate weakened 
with the crack with bisymmetric branches at the angles 

II II ˆ( , )K K �� �

0� �� 	 . 
At low angles *� , singularity exponent in (19) 0+ � . If, besides, a branch is long enough, i.e., 

the branch tip is far from kinking, then singular terms  in (19) can be neglected, and taking into 
account the proportionality of the loading ( / coc nst� � � � ), we write 

* * 2 * * * * * * *ˆ ˆ(cos sin 2 ), (sin cos cos 2 )c c� � � � � � � �� �� � � � � , 

whence the critical load *�̂  is easily found. In the opposite case (incipient branch, the branch angle 
*�  is not low), there is a need to perform additional iteration process to find the critical load *�̂  in 

order to separate singular terms in (19). 
Consider the particular example for a plate, the scheme of which is shown in Fig. 7, � (compare 

with Fig. 1). Sizes of the plate are as follows: 400,200 mm, 0l � 100 mm, and 1 mm; 
characteristics of the material are: Young modulus 

� �
E � 2,105 N/mm2, Poisson ratio � �0.3, the 

yield strength y� � 225 N/��2. On the outer contour of the plate, uniformly distributed stresses 

25 N/mm�� � 2 are given, normal compressing and tangential stresses *� � 225 N/mm2 and *� � 30 
N/mm2 act at branches. In virtue of the presence of two symmetry planes, the calculation area 
represents the upper right quarter of the plate. Branch angles  � � � 15 , 30 , and 45 � . The 
calculation area was divided into 23000 eight-node rectangle and triangle elements, mesh sizes 
being decreased in the vicinity of the crack branch tip with the coefficient 100:1. Fig. 7, b 
demonstrates the mesh fragment in the vicinity of a branch. 

� �

 

 
 

Fig. 7. The scheme of loading of a plate with crack (�), mesh fragment in the vicinity of the branch 
tip (b). 
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Table 1 
The calculation results are listed in the Table 1. In order to obtain SIFs 
IK  and IIK , Rice J-integral [11] was used, which is connected to IK  and 

IIK  by the relation 2
I

2
IIEJ K K� �  as a first approximation of the plane 

stress state. The contour integral was transformed into the integral over the 
area and integration was performed with respect to elements nearest to the 
branch tip. Separation into modes I and II was performed by the DeLorenzi method [15]. Solution 
of the same problem but for stress-free crack contour was compared with that obtained for the 
infinite plane in the case of uniaxial tension by the method of singular integral equations [13, p. 68]. 
The distinction between solutions through IK  is 14%, and that trough IIK is 10%. This can be 
taken as an acceptable result if it is considered that solutions for the finite and infinite areas are 
compared. These results can be improved if more dense mesh is used. 

� �  IK  IIK  

15 �  415,71 57,042 

30 �  387,94 161,03 

45 �  305,33 258,77 

Summary
In the work, the critical fracture parameters (prefracture zone lengths and loads) for branched 
cracks in quasi-brittle materials have been obtained using the modified Leonov-Panasyuk-Dugdale 
model when the prefracture zones occupy rectangles located along the crack branches. The width of 
each prefracture zone is determined from solution of the simplest the plasticity problem for the area 
near the crack tip. In formulating the fracture criteria, the simplest approximations of fracture 
assessment curves for real materials were used. The proposed modification of the Leonov-
Panasyuk-Dugdale model allows estimation of a critical crack opening and critical displacement of 
crack flanks for branches to be made. For deriving simple expressions for critical fracture 
parameters, SIFs for straightforward crack are used, and SIFs for crack with branches are used 
when normal and shear stresses modeling a plasticity zone are given for the branch. In order to 
construct SIFs for the crack with branches, the problem of uniaxial tension of a plate with the crack 
having bisymmetric branch has been solved. Iteration procedure is proposed that allows one to 
obtain critical values of SIFs by the mixed mode depending on the crack branch angle. This 
procedure is implemented just as for short branches when the prefracture zone occupies the all 
branch length, so for long branches when the branch length essentially exceeds the prefracture zone 
length. 
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