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Crack kinking out of an interface, influence of the T-stress 
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Abstract. Cotterell and Rice theory [1] on the kinking of a crack submitted to a biaxial loading in a 
homogeneous material is revisited. Using both an energetic and a stress fracture criteria [2] allows 
defining a positive threshold of the T-stress cT  below which no branching can occur [3] provided 
the inhomogeneities size is small compared to the Irwin length. The absence of such a threshold 
would definitely condemn experimental procedures like the double-cantilever beam (DCB) or the 
compact tension (CT) tests, which result in a positive T-stress at the crack tip. 

The stress intensity factors IK  and T  are computed using a contour integral. Calculations provide a 
very good agreement with the analytical results of the infinite Centrally Notched (CN) plate in 
tension for instance. An asymptotic analysis makes it possible to define the branching angle as a 
discontinuous function of T  with a jump from 0°  to some significant positive value as T  reaches 
the threshold cT . Furthermore, a similar analysis for non vanishing IIK  shows that a positive T-
stress increases the kinking angle due to IIK  alone. 

Introduction 

Fig. 1 The three modes and the associated stress intensity factors 

Within the plane strain elasticity framework, in homogeneous materials, the displacement field in 
the vicinity of a crack tip can be described by the so-called Williams’ series made of power terms 
(Eq. 1). The most significant terms (the second and third ones in Eq. 1) involve a real singularity 
exponent 0.5λ =  associated with two modes (a symmetric opening and an antisymmetric shear 
modes denoted respectively by the roman numbers I and II , see Fig. 1). They are well-known 
universal terms independent of the applied loads and the global geometry of the structure. On the 
contrary, the scaling coefficients iK  ( ,i I II= ) named Stress Intensity Factors (SIF) depend on both 
the global geometry and the loading. The first non singular term called “T-stress” corresponds to a 
tension acting in a direction parallel to the crack (see Fig. 1). The related power is 1, the associated 
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mode is denoted t  and T  holds for the corresponding intensity factor, i.e. the remote tension, 
thanks to an appropriate normalization of  the mode t  (see Eq. 4). 

0 0( ) ( ) ( ) ( ) ( )I III IIr O K r K r T rt …U U u uθ θ θ θ, = + + + + (1) 

where r  and θ  are the polar coordinates, with the crack tip O  chosen as origin. The index 0  means 
that Eq. 1 describes the displacement field in the vicinity of the pre-crack tip prior to the initiation 
of any crack increment (i.e. on an unperturbed domain). The constant term 0 ( )U O  is meaningless. It 
is the rigid translation of the origin (to ensure for consistency that the displacements at O  do not a 
priori vanish). The dots refer to modes with higher order exponents (3 / 2 , 2 , 5 / 2 ...), all of them 
being neglected. 

Introducing two dimensionless mix mode parameters /II Im K K=  and ( ) / IM r T r K= , Eq. 1 
can be rewritten as follows:  

( )0 0( ) ( ) ( ) ( ) ( ) ( ) ...I I I IU r U O K r m M r tu uθ θ θ θ, = + + + + . (2) 

The parameter m  is the classical mix mode parameter (see for instance [4]). The other one, M , 
depends on r  and is similar to the so-called “stress biaxiality ratio” B  used by Leevers and Radon 
[5], the main difference lying in a factor π . The r  dependency is not completely surprising since 
it has already been met in interfacial cracks (Rice [6]) or at a V-notch under complex loading 
(Leguillon and Siruguet [7], Yosibash et al. [8]).  
Note that 0IK =  is a particular case which can be straightforwardly treated exchanging the roles of 

IK  and IIK .  
Using the linear elastic constitutive law, one obtains the following expansion of the stress field 

( )0( ) ( ) ( ) ( ) ( ) ...I
I II

K s sr m M r
r

σ θ θ θ τ θ, = + + + , (3) 

bringing into evidence the singular behaviour in the vicinity of the crack tip. The functions 
( )I

s θ , ( )II
s θ  and ( )τ θ  obviously derive from Eq. 1 or 2 and the elastic constitutive law. From now 

on, we will use the following normalizations of the modes: 

( 0) 1 ( 0) 1 ( 0) 1.I I Ir rrs sθθ θθ θ τ θ= = ; = = ; = = (4) 

Based on an asymptotic analysis of the stress field near the crack tip, the crack deflection is 
usually attributed to the shear mode II  and the crack kinking angle α  is a function of the mix 
mode parameter m . The prediction varies continuously from 0°  (no deflection, 0m = , pure mode 
I ) to a value between 70°  and 78°  (for pure mode II ) depending on the selected criterion: 
maximum hoop stress, maximum energy release rate (a discussion can be found in Bui [4] or 
Leblond [9]) or local symmetry principle (Goldstein and Salganik [10], Amestoy and Leblond [11], 
Leblond and Mouro [12]). 

In general the T-stress is invoked only for the further growth and the curvature of the new crack 
branch but is supposed to play no role at the very beginning of the process [11]. Moreover, 
experiments on crack kinking are generally carried out trying to avoid the spurious effect of the T-
stress (Maccagno and Knott [13], Jernkvist [14]). Nevertheless, Cotterell and Rice [1] have carried 
out a stability analysis of the path of a crack under mode I  loading ( 0IIK = ) concluding that the 
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straight crack path is stable only if 0T < . In a recent paper Ayatollahi and Aliha [15] propose a 
criterion for crack branching which takes the T-stress into account. Nevertheless, it is based on a 
point-stress approach which involves a critical distance cr , assumed to be a material parameter and 
which must be “reasonably” (sic) chosen, a major drawback. It leads to a slightly different 
conclusion: the crack kinking angle α  is a continuous function of T  for 0T >  and vanishes for 

0T < . These results will be discussed further.  
The aim of this paper is to extend Leguillon’s criterion [2] in order to include the T-stress in the 

analysis. This criterion is a combination of an energy and a stress conditions which avoids any 
arbitrary choice of a critical length and has proved to work well to predict crack initiation at V-
notches under symmetric [2] and complex loadings [7],[8] in homogeneous materials. Williams’ 
expansion is used together with a matched asymptotic expansions procedure (see [8]) to derive the 
stress field and the energy release rate. The conclusion differs from the two aforementioned papers, 
the straight crack growth under mode I  loading remains stable up to a strictly positive threshold 

0cT > , as experimentally shown in [3]. 
It is worth noting that many authors [16],[17],[18] emphasize on the difficulty to extract T  from 

a finite element solution. They propose different procedures leading to quite large inaccuracies. 
Herein, the path-independent integral H  [19],[20] is used, keeping in mind that T  is nothing but a 
stress intensity factor associated to mode t . 

Finally, the authors would like to remind that all along the present paper, only the first step of 
crack initiation is considered, no matter the further crack growth and curvature. 

The fracture criterion 

Using a matched asymptotic analysis [8], it has been shown recently (Leguillon [2]) that the 
initiation of a crack at a v-notch can be accurately predicted using the simultaneous satisfaction of 
both a stress and an energy conditions. Furthermore, the proposed criterion coincides with Griffith’s 
one for a pure crack.  
As a consequence of exponents greater than 1 2/  in the Williams’ expansion in the general case, this 
initiation process is shown to be unstable; the crack jumps a short length. The presence of the T-
stress term leads to a similar reasoning which is carried out herein. 

Energy condition. The first condition results from an energy balance between two states of the 
structure prior and after the onset of a short crack increment. It states that the incremental energy 
release rate pG W Sδ δ= − /  has to exceed the toughness cG  of the material, pWδ  being the elastic 
potential energy change and Sδ  the newly created crack surface. In plane elasticity, using Eq. 2 and 
3 along with an asymptotic expansion with respect to the crack increment length �  ( S dδ = ×� , 
where d  stands for the specimen thickness), the energy condition leads to 

2 2 2
11 12 22 1 2( ) ( ) ( ) ( ) ( ) ( ) ... ,I I II II I II cG A K A K K A K B K T B K T C T Gα α α α α α= + + + + + + ≥� � �  (5) 

which rewrites using the previously defined dimensionless mix mode parameters m  and M

2 2 2
11 12 22 1 2[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ]I cG K A A m A m B M B mM C M … Gα α α α α α= + + + + + + ≥ ,� � �  (6) 

where ijA , iB  and C  are coefficients (MPa 1− ) depending on the crack initiation angle α . They 
are defined using the two-scale matched asymptotics procedure (Leguillon [21]) and can be 
computed using the path-independent integral H  as well (see Leguillon and Sanchez-Palencia 
[20]). 
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For simplicity, let us rename ( , , ( ))X m Mα �  the term in brackets in Eq. 6. Due to the symmetry 
properties of the coefficients, in the cases of interest, ( ( ))X m Mα, , �  is an increasing function of �
and the condition in Eq. 5 provides a lower bound for the admissible crack increments lengths 
(except if 0α =  or 0T = ). This is the reason why the crack jumps over a short distance 0>�  if it 
kinks due to the presence of the T-stress. 

Stress condition. The second condition is based on the maximum tension that a material can 
bear before failure. It states that failure can occur only if the opening stress along the expected crack 
path (defined above by the angle α  and the length �  corresponding to the lower bound provided by 
Eq. 5) exceeds the material strength cσ . This criterion, once combined with Eq. 3, writes 

2 2 2( ( ) ( ) ( ) ( ) ...)I I II cK s m s Mθθ θθ θθα α τ α σ+ + + ≥ ,� � (7) 

where the index θθ  stands for the hoop component of the tensors I
s ,

II
s  and τ . The above Eq. 

7 provides an upper bound for the admissible crack increment lengths. 

The mix criterion. The compatibility between inequalities Eq. 6 and 7 gives an equation for the 
crack initiation length c�  as a function of α . As a first and essential consequence, this length 
cannot be considered as a material parameter: 

2

2 ( ( ))
( ( ) ( ) ( ) ( ))

c
c c c

I II c

X m M G
s m s M

σ α
α α τ α

, , =
+ +

� �
�

(8) 

Finally, either Eq. 6 or Eq. 7  gives a condition on IK  for crack initiation in the direction α : 

( ( ))
c

I I
c

GK K
X m Mα α

≥ =
, , �

(9) 

The critical value IK α  depends on α  and the actual kink angle cα  maximizes the denominator, 
i.e. minimizes IK α  giving I fK  (i.e. IK  at failure). This parameter must not be confused with the 
toughness IcK ; it generalizes the IK  at failure introduced in [13], taking the T-stress into account. It 

relies on IcK  using the Irwin relation between cG  and IcK  (biased by 2π  due to the 
normalization in Eq. 4): 

21 2
( ( )) ( ( ))

c
I f Ic

c c c c

GK K
X m M E X m M

ν π
α α

−= = ,
, , , ,� �

(10) 

Moreover I f IcK K=  if 0α = . 
In case of a pure antisymmetric loading, 0IK =  and m  and M  are ill-defined. However, the 

above procedure is simplified and can be reemployed by swapping the roles of IIK  and IK . The 
procedure includes the search for the crack initiation angle. It is worth noting that in this case, 
fracture occurs while 0IK = . Another particular case is when cT σ= : both IK  and IIK  can be 
equal to 0 and nevertheless, a crack initiates. 
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Influence of the T-stress 

Preliminary simulations allowed us to come up with the following conclusions as to our procedures. 
The first one is that no pollution is induced between modes I  and t , i.e. loading a structure with 
pure mode I  results in 0T ≈  and vice-versa. We also matched one of the results obtained by 
Leevers and Radon in [5] on an infinite CN (Centrally Notched) plate, that is yT p= −  (see Fig. 2), 
as well as another one by Larsson and Carlsson [17] on a Compact Tension (CT) sample (see Fig. 
3), that is positive T-stress at the V-notch tip. Finally, plotting the initiation angle cα  vs. mix-mode 
parameter m  perfectly fitted the curve given by Maccagno and Knott [13]. 

Fig. 2 Semi-infinite CN specimen Fig. 3 CT specimen used for the computation of T

We will now focus on the influence of the T-stress assuming that 0IIK =  and then 0m = . Based 
on an assumption of perfect symmetry, the usual analysis leads to the conclusion that if IK  exceeds 

IcK  the crack can grow but no branching can occur whatever T . On the other hand, it seems clear 
that if 0T >  is sufficiently high and approaches the tensile strength of the material, the crack will 
kink even for small values of IK . It is shown in this section that under these conditions, 0α =  can 
become an unstable crack direction naturally rejected because the hypothesis of perfect symmetry 
actually fails due to micro inhomogeneities and flaws along the crack path. 

Note that without mode II , it is impossible to predict the sign of the kink angle (i.e. if the crack 
turns right or left); it is either positive or negative as a consequence of the already mentioned 
random distribution of micro imperfections, which also discards a double symmetric branching. 

Computations are carried out on PMMA ( 3200E =  MPa, 0 3ν = . , 350cG =  J.m 2− , 75cσ =
MPa [22]). Fig. 4 plots IK α  defined by Eq. 9 vs. the kink angle α , for a range of / IT K  ratios. 

Fig. 4 Factor IK α  vs. the kink angle α Fig. 5 Initiation angle cα vs. 0T >
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The initiation angle cα  is extracted from Fig. 4 through a comparison of Ic I f IK K K α= =  for 
0α =  with IK α  (Eq. 9) at other angles. For a given T , the minimum value directly gives the actual 

initiation angle. The threshold cT  corresponds to the smallest value of T  for which 0cα ≠ . 
As already mentioned, for symmetry reasons 0α =  is always a solution from a theoretical 

viewpoint. It corresponds to a minimum of IK α  for small values of T  and is therefore a stable 
direction. But, as the tensile stress increases, beyond the threshold cT  the location of the minimum 
of IK α  skips to a non zero value of α  giving rise to a kinked solution. The direction 0α =  remains 
a solution corresponding now to an extremum but is unlikely to occur. It is an unstable direction, 
any micro inhomogeneity or flaw being able to trigger the kink. 

Obviously, the greater T , the more important the deflection. Fig. 5 illustrates this phenomenon: 
for T  below its critical value cT , 0cα =  is a stable solution (i.e. a global minimum); but as soon as 
the threshold is reached, the initiation angle jumps to a value around 72cα °�  and then keeps 
increasing up to the asymptote 90cα = °  as T  increases. In the limit, the influence of mode I
becomes negligible and the criterion reduces to the stress condition, 0IK � , cT σ=  and 90cα = ° .  

This result and the existence of the threshold are contradictory with the results of Cotterell and 
Rice [1]. These authors also invoke the inhomogeneities and flaws in order to assume that IIK
cannot be exactly vanishing. Thus the crack slightly kinks (see Maccagno and Knott [13]) and 
depending on the sign of T  kinks again or not. Finally, they draw the conclusion that the straight 
crack path is stable when 0T <  and unstable when 0T > . 

It is difficult to find experiments making it possible to discriminate between the existence of a 
positive threshold or not. Nevertheless, a first answer is brought by the CT test by Larsson and 
Carlsson in [17] as previously mentioned, exhibiting a positive T  at the crack tip without any crack 
kinking. Another one can be brought by the Double Cantilever Beam (DCB) test. Computations 
have been carried out on slender beams: height 2h =  cm and two lengths, respectively 20L =  cm 
and 40L =  cm (aspect ratio 1/10 and 1/20, material data are given at the beginning of the section). 
The coupons used have the same geometry as shown on Fig. 3 up to the aspect ratio. The crack 
length is one fourth of the full specimen length. The intensity factors IK  and T  are extracted using 
the path-independent integral H  [19],[20]. Results bring into evidence a non negligible positive T-
stress at the crack tip, respectively 5 3T = .  MPa and 5 7T = .  MPa although far below the threshold 

52 9cT = .  MPa. Following Cotterell and Rice, these results would definitely condemn these kinds of 
experiments, since a positive T-stress at the crack tip would irrevocably lead to an unstable crack 
deflection causing transverse failure of the specimens.   

Our conclusion also differs from that of Ayatollahi and Aliha [15], who use the expansion in Eq. 
3 and the maximum hoop stress criterion to derive an expression of the deflection angle 'cα . 
Nevertheless, it shows that a kink can occur for any small T , and exhibits a strong dependency with 
a critical distance cr , which to the authors’ mind is a difficult data to estimate a priori.  

The present threshold cT  is very high ( 0 7c cT σ.� ) and by far larger than that experimentally 
determined by Selvarathinam and Goree [3] on CT coupons which seems to be surprisingly small. 
One reason is probably that, herein, there is an implicit assumption concerning the flaws and 
inhomogeneities size. It must be much smaller than the characteristic length c�  (Eq. 8) which turns 
out to be around 70c mμ� �  for cT T=  in PMMA (in the present case it is around twice the Irwin 
length). Otherwise, if larger than a few micrometers, it would interact and influence the failure 
mechanism. 
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It has been observed that the ratio c cT σ/  remains constant (around 0.7) for several materials. This 
is not really surprising since both mode I  and T-stress fields are independent of the material elastic 
parameters (due to the normalization in Eq. 4) [4]. 

Simulations have also been carried out in order to determine the influence of a negative T-stress: 
they highlight the fact that straight propagation is stable in any case, this solution being a minimum 
whatever 0T < . This conclusion is obviously in agreement with that of Cotterell and Rice. 

We also investigated the general mix mode case ( 0IK > , 0IIK >  and 0T > ), and not 
surprisingly, the non vanishing IIK  triggers a crack deflection without any threshold and this 
mechanism is enhanced by T  (remember that IIK  can be chosen positive without restriction to the 
general case, the only difference being the sign of the kink angle).

Conclusion 

It has been shown that, even under a symmetric loading, the T-stress at a crack tip can induce a 
crack kinking as soon as it reaches a given positive threshold cT  which is strongly related to the 
strength cσ  of the material. No kinking can occur below the aforementioned critical value provided 
the inhomogeneities size is much smaller than the characteristic length involved in the model. Only 
large flaws can account for a lower threshold. Selvarathinam and Goree [3] explain that if a crack 
slightly kinks due to micro-inhomogeneities with T  below the threshold cT , it will instantaneously 
realign itself along the direction of the primary crack. This mechanism has been confirmed in wood 
specimens in [23], but is neglected here, the crack being assumed to grow straight in that case. 

One particular situation has not been treated herein, the general mix-mode case with a 
compressive T-stress: 0IK > , 0IIK >  and 0T < . Clearly, if the compressive T-stress is small and 

IIK  large, the crack kinks and remains open. But if 0T <  decreases, the combination with IIK
leads to a decreasing opening hoop stress of the kinked crack and finally this class of solution 
disappears. Depending on the intensity of the load, it can remain a straight propagation in mix 
mode. However, the toughness cG  corresponding to mode I propagation is no longer involved. One 
has to consider the toughness as a function of the mix mode parameter m : ( )c cG G m=  [23][24]. 
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