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Abstract. This paper concentrates on the singular stress fields at free edges in multi-layered 
structures. A path independent contour integral method is employed to calculate the intensity of the 
singular stress fields. The computational procedure is also demonstrated in a flow chart. To provide 
application guidance for engineers, standardized numerical formulae for normalized stress intensity 
factors are summarized corresponding to different material combinations. The effect of the bond 
width, the thickness of the metal layer and the material elasticity on the stress intensity factor are then 
quantified. Anisotropy of the single crystal silicon is addressed. Furthermore, applicability of the 
proposed approach is stated and the valid range of the K-dominated field is also presented. Results 
obtained from the H-integral approach are in good agreement with those obtained from the detailed 
finite element solutions.  

Introduction 
With the development of micromachining techniques, multi-layered thin films on silicon 

substrates have a wide variety of applications in electronics packaging and integrated circuits. Due to 
the elastic mismatch, stress concentrations may develop and a weak singularity (�>0.9) may exist at 
free edges (Fig. 1). The initiation of failure at free edges in multi-material systems often occurs. 
Hence, to characterize the singular stress fields at these failure sites becomes a critical issue. It is well 
known that the interface stress fields around the notch tip are of the form  
where  is the number of eigenvalues available from the characteristic equation, r  is the radial 
distance from the interface corner and  is the intensity of the singular stress fields. 
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nK 1m� �  is the 
order of the stress singularity, depending on the material elastic properties and joint geometries 
described by angles�  and � . In addition to these parameters, the stress intensity factor  depends 

on the remote loading. The stress field is singular for 
m

nK

0 1m�	 	 . The knowledge of both  and 
m

nK m�  
are needed to fully describe the singular stresses and displacements in the vicinity of the notch tip.  

Over the past four decades, the order of the stress singularity, the near-tip fields, the methods to 
evaluate the stress intensity factor for a general corner, and corresponding failure criteria have been 
extensively investigated. Nevertheless, little attention [1-3] has been given to assess the weak 
singular stress fields at free edges for minimizing risk of failure in multi-layered structures.  

Theory  
An efficient computational procedure to obtain the stress intensity factor around a bi-material 

interface corner is briefly described herein, see also the flow chart (Fig. 2). The detailed 
representations can be found elsewhere [4, 5].  
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Fig. 1 An edge geometry with dissimilar materials 

Asymptotic analysis 
Asymptotic analysis can be performed to compute the displacements and stresses at the bi-material 

interface corner. Two eigenvalue problems are solved on a basis of Stroh's sextic formalism [6-8] and 
Williams’ eigenfunction expansion method [9]. 

The first eigenvalue problem is material-related and can be obtained by means of displacement u 
(1) and stress function � (2) combined with the constitutive law and equilibrium equations. 
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f�  are arbitrary functions of the arguments , where �z z x p� y�� �  is the complex variable. The six 
complex eigenvalues  satisfy �p 3p p� �� �  and a, b are the Stroh eigenvectors. 

The second eigenvalue problem is geometry-related and can be solved by applying the boundary 
conditions (3) for the interface notch problem [10], see Fig. 1.  

� � � � � � � � � � � �0  ,  0  ,  0 0  ,  0 0A B A B A� �� � � � �t t t t u uB . (3) 

Path independent H-integral approach 
In traditional fracture mechanics, K  is a dominant coefficient to describe the crack tip conditions 

and define the amplitude of crack tip singularity. In a manner similar to K , the term H  is employed 
herein to characterize the intensity of singular stress field for a notched body without a preexisting 
crack. Based on Betti’s reciprocal work theorem [11], the H-integral approach is one of the most 
powerful approaches using finite element results to obtain stress intensities for configurations with 
cracks or notches. Choosing  [6, 7, 12] as � ��zf

� � � �3
1   and   1f z z q f z z� h�

� � � � � � �� ��� �� , (4) 

and utilizing normalizations of the mode I fields by � � 1
22 0 In

IK r�� � �� �  and of the mode II fields by 

, the inplane asymptotic fields surrounding the notch tip can be expressed as: � � 1
12 0 IIn

IIK r�� � �� �
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here M  corresponds to material A or B, see Fig. 1. In the absence of body forces, the H-integral takes 
the form [4]:  

� * *
ij i ij i jH u u n� �

�
� �� � ds ,  (6) 
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Fig. 2 A flow chart illustrating a procedure to obtain the stress intensity factor 

Applications and results 
The multi-layered structures considered in our study are shown in Fig. 3. Typical material 
combinations in microelectronic devices are taken into account. The elastic properties of the 
materials and the evaluation of �  for various joint geometries and material combinations are listed in 

  

1756



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic 

Table 1. Plane strain conditions are assumed in all modelling. Finite element analyses are performed 
with ABAQUS. Eight-noded isoparametric elements were used. We also assume that the materials 
are perfectly bonded along the interface. The mesh refinement, dimensions and loading conditions 
are depicted in Fig. 3. Beam span L , height  and width  of silicon substrate are 10mm, 1mm and 
3.4mm, respectively. The anisotropic silicon substrate employed here is 350�m thick oriented in 
[100] crystal direction with elastic constants of 

h w

11 165.7C GPa� ,  and 
 [13]. 

12 63.9C GPa�
Pa44 79.56C G�

 
Fig. 3 Specimen geometry, finite element mesh and loading conditions. 

 
Table 1 
Material elastic properties and the orders of stress singularities with varying material combinations and joint geometries 

 Isotropic Materials 
Materials Elasticity Au Cu Al Si Steel Epoxy 

Young’s Modulus ( ) GPa 83 129 70 167 200 2.50 

Poisson’s Ratio 0.44 0.34 0.35 0.30 0.30 0.30 

       
Interface X  Material A Material B 1�  Material A Material B 1�  

 Au Isotropic 
silicon 0.9332 Au Anisotropic 

silicon 0.9522 

 Al  0.9304 Al  0.9481 
 Cu  0.9912 Cu  0.9967 

Interface Y  Steel Epoxy 0.7049    
 

Non-dimensional stress intensity factor
A combination of the finite element results and a path independent contour integral is used to 

evaluate the stress intensity factor. Since n
mK  has the unit of � �� �1 mstress length �� , dimensional 

considerations dictate that 

� �0 1
2

, 6

n
n ma t

m w t
KY PL w

bh
��

� , (7) 
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where , , , , , a w t 0t P L , , and h  denote, respectively, the bond length, substrate width, 
conductor layer thickness, nominal thickness, concentrated force, and span, width and height of the 
steel beam (

b

Fig. 3), whereas Y  is a shape function depending on the notch geometry and material 
elastic constants. Furthermore, we can write 

� � � � � �0
,n na t a t

m refw t w tY Y f g� � �
0

, (8) 

where 
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The results obtained from the H-integral approach can be fitted to the power function 
� � � kf geometry j geometry�  and � � � �sg geometry l geometry� . The best-fit values for the 

isotropic Cu/Si and Au/Si cases are shown in Fig. 4.  
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Fig. 4 Non-normalized fitting functions (Cu/Si and Au/Si) 

 
Consequently, standardized numerical formulae for two individual cases read for the isotropic 

Cu/Si case: 

� � � � � �-int 0 0

0.2671.118, 2.854 0.454 0.651
H egral

n a t a t
w t w tY

��
� � � , where  (9) 0 =1000t nm

and for the isotropic Au/Si case: 

� � � � � �-int 0 0

0.1951.009, 1.464 0.490 0.721
H egral

n a t a t
w t w tY

��
� � � , where  (10) 0 =1000t nm
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Fig. 5 The power function � �a

wf  and � �0
t
tg  for different material combinations 

Furthermore, if we normalize the dimensionless stress intensity factor by dividing with the 
corresponding reference value, the respective power function for different material combinations 
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amazingly falls very close to one curve, see Fig. 5. The greatest scatters of two individual cases from 
the average fitting are 7.8% and 5.6% for Cu/Si and Au/Si case, respectively. It is still appreciable 
from the engineering’s perspective. Hence, the average solution proposed here may be a favourable 
alternative. 

 
The effect of the bond width, the thickness of the metal layer and the material elasticity 

The effect of the bond width is analyzed. The metal layer remains 200nm thick whereas the bond 
width is varied from 1.7mm to 2.5mm. As expected, the stress intensity factor clearly decreases for 
the free edge interface (Interface X ) with the bond width but change insignificantly for the 90  
sharp notch (Interface Y .). 

�

In addition, the effect of the elastic mismatch on the mode I stress intensity factor is also 
investigated. Alternative conductor layers of copper (Cu), gold (Au) or aluminium (Al) are employed 
for the analysis as material A , see Fig. 1. For Interface X , it can be observed from Fig. 6 that the 
structure with a Cu layer yields the highest dimensionless stress intensity factor , followed by that 
with Au and Al layer. A comparison between isotropic Si and anisotropic Si substrate is also 
included. Anisotropy of the Si substrate has a significant influence on the stress intensity factor when 
combined with an Au or Al metal layer but not with a Cu layer. Unlike the response of the structure 
with a Cu layer, the other two metal materials combined with an isotropic Si substrate produce lower 
values of the stress intensity factor than those combined with an anisotropic Si substrate. By contrast, 
the influence of material anisotropy on interface normal stresses is shown in 

1
nY

Fig. 7. It is shown that 
the material isotropy generates the high interface stresses for all specimens. The specimen with a 
200nm thick and 2.1mm wide Cu layer produces a lower driving force than for a specimen with an Au 
or an Al layer if subjected to the same load. 

The effect of thin-film thickness on the dimensionless stress intensity factor is further explored. In 
these simulations, the bond area is kept constant ( 1.7mma � ), the thin-film thickness equal to 50, 
100, 200, 300, 500, 750 and 1000 nm  are analyzed. It turns out that the magnitude of stress intensity 
factor for Interface X  approaches a constant value with the increase of the thickness of metal layer. 
The dimensionless stress intensity factor is sensitive to thin-film cases whereas the thickness 
component can be ignored when a metal layer is above 300  thick.  nm
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Fig. 6 The effect of material properties and metal layer thickness at Interface X  and Interface Y  
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Fig. 7 The effect of the material anisotropy on interface normal stress 

Discussion: Applicability of H-integral approach 
The proposed H-integral approach is based on the assumption of elasticity with the dominance of a 

K -field. Consider a typical case for an Au layer bonded with an isotropic silicon substrate. The 
interface stress component ���  is plotted against the distance from the free edges with varying metal 
layer thickness (Fig. 8a) and various bond width (Fig. 8b). The extent of the K -dominated region is 
estimated by comparing finite element results with asymptotic analysis. The two solutions are in good 
agreement for all the cases. It matches up to a radial distance of 70nm for the specimen with a 1.7mm 
wide and 300nm thick metal layer regarding a 5% deviation. It matches up to 45nm for the specimen 
with a 200nm thick and 2.5mm wide metal layer considering a 10% difference. As expected, the 
thicker the thin-film layer, the greater is the valid K -dominated region. Within the bond range we 
investigated here, the difference of K -field has not a significant dependence on the bond width. It 
seems that the deviation is slightly larger with increasing bond width but tends to stabilize for the 
specimens with a bond width larger than 2.3mm. Moreover, the use of the critical stress intensity 
factor as a failure initiation parameter requires that the size of inelastic zone (process zone) should be 
much smaller than the extent of the K -field under the failure load. Taking A  as an 
example and assuming the elastic–linear hardening model with a yield stress of 160

u(200nm)/Si
MPa  and a 

hardening modulus of 8.3 GPa . Applying the critical delamination load  [3] to the 
specimen, it was observed that no plastic strain occurred in the finite element analysis.  

0.6cP � N

Summary 
A feasible H-integral approach to compute the edge stress intensity factor in multi-layered 

structural components with weak singularities is shown in the present work. The computational 
procedure is illustrated in a flow chart. Standardized numerical formulae for varying material 
combinations are proposed from a design engineer’s perspective. It has also been shown that the 
material dependence can be normalized. The effects of bond width, elastic mismatch and metal layer 
thickness on the stress intensity factor have been quantified. Influence of anisotropy of single crystal 
silicon on the stress intensity factor and the interface stress is also represented. Lastly, the 
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applicability of the H-integral approach has been checked. The extent of the K -dominated field is 
assessed by comparing the asymptotic solution to the detailed finite element analysis. It is observed 
that the valid range of the K -field is strongly influenced by thin-film thickness but not by bond 
width.  
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Fig. 8 -dominated field for specimens with (a) an Au layer thickness from 50 to 300nm and K
 (b) an Au layer bond width from 1.7mm to 2.5mm 
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