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Abstract. A meshless method based on the local Petrov-Galerkin approach is proposed for crack 
analysis in two-dimensional (2-D) magneto-electric-elastic solids with continuously varying 
material properties. Stationary and transient dynamic problems are considered in this paper. The 
local weak formulation is employed on circular subdomains where surrounding nodes randomly 
spread over the analyzed domain. The test functions are taken as unit step functions in derivation of 
the local integral equations (LIEs). The moving least-squares (MLS) method is adopted for the 
approximation of the physical quantities in the LIEs.  

Introduction 

Modern smart structures made of piezoelectric and piezomagnetic materials offer certain potential 
performance advantages over conventional ones due to their capability of converting the energy 
from one type to other (among magnetic, electric, and mechanical) [1]. Former activities were 
focused on modeling of magneto-electric-elastic fields to determine the field variables [2,3]. 
Recently, increasing interest is devoted to fracture mechanics of magneto-electric-elastic materials 
[4-8]. All above mentioned works are made under a static deformation assumption. However, 
dynamic fracture analyses are occurring in literature very seldom. Some works on relatively simple 
anti-plane problems have been published [9,10].  
  Magnetoelectric coupling plays an important role in the dynamic behaviour of certain materials, 
especially compounds which possess simultaneously ferroelectric and ferromagnetic phases. 
Remarkably large magnetoelectric effects are observed in composites rather than in either single 
phase/constituent [11]. If the volume fraction of constituents is varying in a predominant direction 
we are talking about functionally graded materials (FGMs). A review on various aspects of FGMs 
can be found in the monograph of Suresh and Mortensen [12]. According the best of authors’ 
knowledge there is available only one paper [13] with applications to continuously 
nonhomogeneous magneto-electric materials.  
   The solution of general boundary value problems for continuously nonhomogeneous magneto-
electric-elastic solids requires advanced numerical methods due to the high mathematical 
complexity. Besides this complication, the magnetic, electric and mechanical fields are coupled with 
each other in the constitutive equations. In spite of the great success of the finite element method 
(FEM) and boundary element method (BEM) as effective numerical tools for the solution of 
boundary value problems in magneto-electric-elastic solids, there is still a growing interest in the 
development of new advanced numerical methods. In recent years, meshless formulations are 
becoming popular due to their high adaptability and low costs to prepare input and output data in 
numerical analysis. A variety of meshless methods has been proposed so far with some of them 
applied only to piezoelectric problems [14,15]. The meshless local Petrov-Galerkin (MLPG) 
method is a fundamental base for the derivation of many meshless formulations, since trial and test 
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functions can be chosen from different functional spaces. Recently, the MLPG method with a 
Heaviside step function as the test functions [16,17] has been applied to solve two-dimensional (2-
D) homogeneous  piezoelectric problems [18]. In the present paper, the MLPG method is extended 
to 2-D continuously nonhomogeneous magneto-electric-elastic solids with cracks. The coupled 
governing partial differential equations are satisfied in a weak form on small fictitious subdomains. 
Nodal points are introduced and spread on the analyzed domain and each node is surrounded by a 
small circle for simplicity, but without loss of generality. The spatial variations of the displacements 
and the electric potential are approximated by the moving least-squares scheme [16]. After 
performing the spatial integrations, a system of linear algebraic equations for the unknown nodal 
values is obtained.  

Local integral equations 
Basic equations of phenomenological theory of nonconducting elastic materials consist of the 
governing equations (Maxwell’s equations, the balance of momentum) and the constitutive 
relationships. The governing equations completed by the boundary and initial conditions should be 
solved for unknown primary field variables such as the elastic displacement vector field , 
the electric potential 

( , )iu �x
( , )� �x

( , )
 (or its gradient called the electric vector field ), and the 

magnetic potential 
( , )iE �x

� �x  (or its gradient called the magnetic intensity field ). The 
constitutive equations co-relate the primary fields {  with the secondary fields 

(iH x, )�
, , }i i iu E H

{ , , }ij i iD B� which are the stress tensor field, the electric displacement vector field, and the magnetic 
induction vector field, respectively.  
The electromagnetic fields can be considered like quasi-static [19]. Then, the Maxwell equations are 
reduced to two scalar equations  
   ,                                                                                                                                (1) , ( , ) 0j jD � �x
   ,                                                                                                                                 (2) , ( , ) 0j jB � �x
The rest vector Maxwell’s equations in quasi-static approximation,  and , are 
satisfied identically by appropriate representation of the fields and  as gradients of 
scalar electric and magnetic potentials 

0�� �E
)� H x

0�� �H
( ,E x ( , )�

( , )� �x and ( , )� �x , respectively,  
    ,                                                                                                                    (3) ,( , ) ( , )j jE � � �� 	x x

�x

�

   .                                                                                                                     (4) ,( , ) ( , )j jH � �� 	x
To complete the set of governing equations, eqs. (1) and (2) need to be supplied by the equation of 
motion in elastic continuum 
   ,                                                                                                     (5) , ( , ) ( , ) ( , )ij j i iX u� � � 
� �x x x��
where ,iu�� 
  and  denote the acceleration of displacements, the mass density, and  the body 
force vector, respectively. A comma after a quantity represents the partial derivatives of the quantity 
and a dot is used for the time derivative.  

iX

   The constitutive equations involving the general electro-magneto-elastic interaction [11] to media 
with spatially dependent material coefficients for continuously non-homogeneous media are given  
  ,                                                           (6) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )ij ijkl kl kij k kij kc e E d H� � � � � �� 	 	x x x x x x x

�x
�

  ,                                                           (7) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )j jkl kl jk k jk kD e h E H� � � � � � �x x x x x x
  ,                                                           (8) ( , ) ( ) ( , ) ( ) ( , ) ( ) ( , )j jkl kl kj k jk kB d E H� � �  � �� � �x x x x x x x
where  is the strain tensor and , , and  are the elastic coefficients, dielectric 
permittivities, and magnetic permeabilities, respectively; , , and are the 

ij� ( )ijklc x ( )jkh x ( )jk� x

kije ( )x ( )kijd x ( )jk x
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piezoelectric, piezomagnetic, and magnetoelectric coefficients, respectively. Owing to transient 
loadings, inertial effects and coupling, the elastic fields as well as electromagnetic fields are time 
dependent, though the fields  iE  and iH  are treated in quasi-static approximation.  
   In case of some crystal symmetries, one can formulate also the plane-deformation problems [19]. 
For instance, in the crystals of hexagonal symmetry (class 6 ) with mm 3x  being the 6-order 
symmetry axis and assuming  as well as the independence on 2u � 0 2x , i.e. , we have  

. Then, the constitutive equations (6) - (8) are reduced to the following 
form 

,2( ) 0��
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The following essential and natural boundary conditions are assumed for the mechanical field 

   ,                 on     , ( , ) ( , )i iu u� �x x� � �u

   ,      on     ,   . ( , ) ( , )i ij j it n t� � �� �x x�
t� u t� ��

 For the electrical field, we assume 
    ( , ) ( , )� � � ��x x� ,          on     , p�

)x    ,      on     ,    ( ) ( , ) ( , ) ( ,i in D Q Q� �� �x x x � � q� p q� � � ��

and for the magnetic field 

   ( , ) ( , )� � � ��x x� ,           on     , a�

)x    ,        on     ,    ( ) ( , ) ( , ) ( ,i in B S S� �� �x x x � � b� a b� � � ��

where  is the part of the global boundary  with prescribed displacements, while on , u� � t� p� ,  
, , and  the traction vector, the electric potential, the normal component of the electric 

displacement vector, the magnetic potential and the magnetic flux are prescribed, respectively. 
q� a� b�
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Recall that can be considered approximately as the surface density of free charge, provided 
that the permittivity of the solid is much greater than that of the surrounding medium (vacuum). 

( , )Q �x�

   Applying the Laplace-transform to the governing equations (5) one obtains  

   2) ( ), ( , ( , ) ( , )ij j i ip p u� 
	x x p F p� 	x x ,                                                                                      (12) 
where 
    ( , ) ) ( ,0) ( ,0)i iF p p pu u� � �x x�

i

( ,i iXx x ,     
is the re-defined body force in the Laplace-transformed domain with the initial boundary conditions 
for the displacements and velocities . Recall that the subscripts take now values . ( ,0)iu x� {1, 3}�
   The MLPG method constructs a weak-form over the local fictitious subdomains such as s� , 
which is a small region constructed for each node inside the global domain [16]. The local 
subdomains overlap each other, and cover the whole global domain . The local subdomains could 
be of any geometrical shape and size. In the present paper, the local subdomains are taken to be of a 
circular shape for simplicity. The local weak-form of the governing equation (12) can be written as                      

�

2 *
, ( , ) ( ) ( , ) ( , ) ( ) 0

s

ij j i i ikp p u p F p u d� 

�

� 	 ��� x x x x x� � �� ,                                                          (13) 

where is a test function.  * ( )iku x
Applying the Gauss divergence theorem to eq. (13) one obtains 

* * 2 *
,( , ) ( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) 0

s s s

ij j ik ij ik j i i ikp n u d p u d F p p u p u d� � 

�� � �

� �� 	 �� 	 � �� �� � �x x x x x x x x x ,  (14)                    

where s��  is the boundary of the local subdomain which consists of three parts 

s s s�� tL�� � ��su  [16]. Here, sL  is the local boundary that is totally inside the global domain, 

st�  is the part of the local boundary which coincides with the global traction boundary, i.e., 

st t� � � �s� � , and similarly su�  is the part of the local boundary that coincides with the global 
displacement boundary, i.e., su � s u� ��� � . 

    By choosing a Heaviside step function as the test function  in each subdomain, the local 
weak-form (14) is converted into the following local boundary-domain integral equations  

* (iku x)

  2( , ) ( ) ( , ) ( , ) ( , )
s su s st s

i i i
L

t p d p u p d t p d F p d

�� � � �

� 	 � � 	 � 	 �� � � �x x x x x�
i .                                      (15)  

Similarly, the local weak-form of the governing equation (2) can be written as                       

   *
, ( , ) ( ) 0

s

j jD p v d
�

� �� x x ,                                                                                                          (16) 

where  is a test function.  *( )v x
Applying the Gauss divergence theorem to the local weak-form (16) and choosing the Heaviside 
step function as the test function v  one can obtain   *( )x

   ( , ) ( , )
s sp sqL

Q p d Q p d
�� �

� � 	 �� �x x� ,                                                                                                (17) 

where 
  , , ,( , ) ( , ) ( ) ( , ) ( , ) ( , )j j jkl k l jk k jk k jQ p D p n e u p h p p n�  �� �� � 	 	� �x x x x x x . 
The local integral equation corresponding to the third governing equation (3) has the form 
   ( , ) ( , )

s sa sbL

S p d S p d
�� �

� � 	 �� �x x� ,                                                                                                 (18) 
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where magnetic flux is given by 
  , , ,( , ) ( , ) ( ) ( , ) ( , ) ( , )j j jkl k l kj k jk k jS p B p n d u p p p n � � �� �� � 	 	� �x x x x x x . 
The trial functions are chosen to be the MLS approximations by using a number of nodes spreading 
over the domain of influence. According to the MLS method [16], the approximation of the 
displacement can be given as 

   , 
1

( ) ( ) ( ) ( ) ( )
m

h T
i i

i
p a

�
� ��u x x x p x a x

where  is a vector of complete basis functions of order m and � 1 2( ) ( ), ( ),... ( )T
mp p p�p x x x x �

� �1 2( ), ( ),... ( )ma a ax x x( ) �a x  is a vector of unknown parameters that depend on x. The basis functions 

are not required to be polynomials. It is convenient to introduce  singularity for secondary 
fields at the crack tip vicinity for modelling of fracture problems.  Then, the basis functions can be 
considered in the following form 

1/ 2r	

  � �1 2( ) 1, , , cos( / 2), sin( / 2), sin( / 2)sin , cos( / 2)sinT x x r r r r     �p x      for m=7 

where r and  are polar coordinates with the crack tip as the origin.  
    The approximated functions for the Laplace transforms of the mechanical displacements, the 
electric and magnetic potentials can be written as  

 
1

ˆ ˆ( , ) ( ) ( ) ( )
n

h T a a

a
p p!

�
� " ��u x � x u x u ,     

1

ˆ( , ) ( ) ( )
n

h a

a

ap p� ! �
�

��x x ,                                                                      

  
1

ˆ( , ) ( ) ( )
n

h a

a

ap p� ! �
�

��x x ,                                                                                                           (19) 

where the nodal values # 1 3ˆ ˆ ˆ( ) ( ), ( )
Ta a a $p u p u p�u  , ˆ (a )p�  and ˆ (a )p�  are fictitious parameters for 

the displacements, the electric and magnetic potentials, respectively, and  is the shape 
function associated with the node a.  

( )a! x

   The Laplace transform of traction vectors ( , )it px  at a boundary point s���x  are approximated 
in terms of the same nodal values ˆ a ( )pu  as 

   
1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
n n n

h a a a a

a a a
)a ap p p� �

� � �
� � �� � �t x N x C x B x u N x L x P x N x K x P x p ,  (20)  

where the matrices , and are defined in eq. (9), the matrix  N(x) is related to the 
normal vector n(x) on 

( ), ( )C x L x ( )K x

s��  by 

   1 3

3 1

0
( )

0
n n

n n
� �

� � �
� �

N x

and finally, the matrices  and  are represented by the gradients of the shape functions as aB aP

  
,1

,3

,3 ,1

0
( ) 0

a

a a

a a

!
!

! !

� �
� �� � �
� �� �

B x ,       ,1

,3

( )
a

a
a

!
!
� �

� � �
� �

P x .                  

Similarly the Laplace-transform of the normal component of the electric displacement vector 
( , )Q px can be approximated by 

1 1 1
1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
n n n

h a a a a

a a a
Q p p p p� �

� � �
� 	 	� � �x N x G x B x u N x H x P x N x A x P x )a a ,   (21) 

where the matrices , and  are defined in eq. (10) and ( ), ( )G x H x ( )A x

1697



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

   .    % &1 1( ) n n�N x 3

Eventually, the Laplace-transform of the magnetic flux ( , )pS  is approximated by x

1 1 1
1 1 1

ˆˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n n n

h a a a a

a a a
S p p p p� �

� � �
� 	 	� � �x N x R x B x u N x A x P x N x M x P xa a ,    (22)                  

with the matrices and  being defined in eq. (11). ( )R x ( )M x
   Furthermore, in view of the MLS-approximation (20) - (22) for the unknown quantities in the 
local boundary-domain integral equations (15), (17) and (18), we obtain their discretized forms as 

  2

1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s st s s sq

n n
a a a a a

a aL L

d p d p d p
 !
� ��� � ��

' (' (
) *� 	 � � � �) *) * ) *+ , + ,

� �� � �N x C x B x I x u N x L x P x �

1

ˆ( ) ( ) ( ) ( ) ( , ) ( , )
s sb st s

n
a a

a L

d p p d p d
� �� � �

' (
� � � 	 � 	 �) *) *+ ,
� � � �N x K x P x � t x F x�  ,                                     (23)  

           1 1
1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s sp s sp

n n
a a a a

a aL L

d p d p
� ��� ��

' ( '
) * )� 	 �
) * )+ , +

� �� �N x G x B x u N x H x P x �
(
* 	
*,

d��

(
* 	
*,

d��

  ,                                                            (24) 1
1

ˆ( ) ( ) ( ) ( ) ( , )
s sp sq

n
a a

a L

d p Q p
� �� �

' (
) *	 � � 	
) *+ ,

� � N x A x P x � x�

1 1
1 1

ˆˆ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
s sp s sp

n n
a a a a

a aL L

d p d p
� ��� ��

' ( '
) * )� 	 �
) * )+ , +

� �� �N x R x B x u N x A x P x �          

  ,                                                            (25) 1
1

ˆ( ) ( ) ( ) ( ) ( , )
s sp sq

n
a a

a L

d p S p
� �� �

' (
) *	 � � 	
) *+ ,

� � N x M x P x � x�

which are considered on the sub-domains adjacent to the interior nodes as well as to the boundary 
nodes on st� , sq�  and sb� . In equation (23), I  is a unit matrix.  
   Collecting the discretized local boundary-domain integral equations together with the discretized 
boundary conditions for the displacements, the electrical and magnetic potentials results in the 
complete system of linear algebraic equations for the computation of the nodal unknowns.   

Numerical examples 
An edge crack in a finite magneto-electric-elastic strip is analyzed. The geometry of the strip is 
given in Fig. 1 with the following values are selected: ,  and . Due to 
the symmetry of the problem with respect to the 

0.5a � / 0a w � .4 .2

1

/ 1h w �
x -axis, only a half of the strip is modeled. We 

have used again 930 equidistantly distributed nodes for the MLS approximation of the physical 
fields. The functionally graded material properties in the 1x -direction are considered 
    0( ) exp( )ij ij f 1f f ��x x ,                                                                                                                (26) 
where the symbol ijf  is commonly used for partial material coefficients and 0ijf correspond to the 
material parameters of composite given by Li [20]. We have considered the same 
exponential gradient for all coefficients with value 

3 2BaTiO -CoFe O4

2� �  in the numerical calculations. The strip is 
subjected to an impact mechanical load with Heaviside time variation and the intensity 0 1Pa� � . 
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The impermeable boundary conditions for the electric displacement and magnetic flux on crack 
surfaces are considered. 

a
w

cij0

c exp( x )ij0 1�

x1

x3

2h

 
Fig. 1 An edge crack in a finite strip with graded material properties in 1x -direction 

 
In the crack tip vicinity, the displacements and potentials show the classical r  asymptotic 
behaviour. Hence, correspondingly, stresses, the electrical displacement and magnetic induction 
exhibit 1/ r behaviour, where r is the radial polar coordinate with origin at the crack tip. Garcia-
Sanchez et al. [21] extended the approach used in piezoelectricity to magnetoelectroelasticity to 
obtain asymptotic expression of generalized intensity factors. 
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Fig. 2 Normalized SIF for an edge crack in a strip under a pure mechanical load  0 ( 0)H� � 	

 
The time variation of the normalized stress intensity factor is given in Fig. 2, where 

.For a mechanical FGMs along the 1/ 22.642Pa mstat
IK � " 1x -coordinate and a uniform mass density, 

the wave propagation is growing with 1x . Therefore, the peak value of the SIF is reached in a 
shorter time instant in functionally graded strip than in a homogeneous one. The maximum value of 
the SIF is only slightly reduced for the FGM cracked strip. 
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Summary 

A meshless local Petrov-Galerkin method (MLPG) is presented for 2-D crack problems in 
continuously nonhomogeneous and linear magneto-electric-elastic solids. The analyzed domain is 
divided into small overlapping circular subdomains. A unit step function is used as the test function 
in the local weak-form of the governing partial differential equations. The moving least-squares 
(MLS) scheme is adopted for the approximation of the physical field quantities. The present method 
provides an alternative numerical tool to many existing computational methods like the FEM or 
BEM. The main advantage of the present method is its simplicity. Compared to the conventional 
BEM, the present method requires no fundamental solutions and all integrands in the present 
formulation are regular. Thus, no special numerical techniques are required to evaluate the integrals. 
It should be noted here that the fundamental solutions are not available for magneto-electric-elastic 
solids with continuously varying material properties in general cases. The present formulation also 
possesses the generality of the FEM. Therefore, the method is promising for numerical analysis of 
multi-field problems.  
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