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Abstract. The presentation reviews two modelling approaches used to study fracture in composite 
systems where nonlinear mechanisms arise along extended regions of the crack surfaces leading to 
so called large scale bridging conditions, the bridged- and the cohesive-crack models. Characteristic 
length scales and dimensionless groups that control fracture characteristics, size-scale transitions in 
the structural response of finite size members and modes of failure will be recalled and discussed.  
Applications to composite materials for civil, naval and aeronautical structures will be presented 
that highlight the significance of the bridged-crack approach in designing and optimizing new 
advanced composites with improved mechanical properties. Recent results on the problem of 
multiple dynamic delamination fracture in multilayered plates will be discussed with focus on the 
problem of energy absorption through multiple delamination. 

Introduction
Since the early works of Barenblatt [1] and Dugdale [2], the cohesive and bridged crack models 
have been effectively used to model fracture in composite systems where nonlinear mechanisms 
arise along extended regions of the crack surfaces or ahead of pre-existing cracks (process zones)  
[3-6]. These mechanisms, which include the formation, coalescing and branching of microcracks, 
crazing, debonding, yielding, sliding and pulling-out of the reinforcing phases and frictional 
contact, can dissipate a considerable amount of energy so that additional external work is required 
for sustained growth of the macrocracks. Figure 1 highlights the bridging action developed by 
titanium short rods (z-pins) inserted to reinforce in the through-thickness direction  a conventional 
carbon-epoxy laminate. The pins oppose the relative mode I and mode II crack displacements so 
shielding the crack tip from the applied load. As a consequence, the intrinsic fracture toughness of 
the base material is increased.  

 
 

 
 
 
 
 
 
 
 
 

 
Figure 1 – Titanium z-pins bridging a  mixed mode crack in a carbon-epoxy laminate (adapted from [12]) 
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In these systems, fracture becomes a large scale bridging problem that cannot be described by 
Linear Elastic Fracture Mechanics or characterized by a single fracture parameter; LEFM gives a 
correct description of the response only in limiting configurations, where the length of the process 
zone is much smaller than the crack length or any other relevant lengths of the problem (e.g., the 
ligament size). The nonlinear crack processes must be represented explicitly in the models used to 
analyze the body. The bridged- and cohesive-crack models replace the process zone by a fictitious 
crack ahead of the pre-existing traction free crack and represent the nonlinear mechanisms as a 
distribution of tractions that oppose the relative crack displacements (Figure 2, for mode I 
problems). The tractions are related to the relative crack displacements through bridging traction 
laws, which aree generally nonlinear, and replace toughness and strength as the essential material 
properties (Figure 3 for mode I problems). The area beneath the laws define the energies supplied 
by the bridging or cohesive mechanisms. The bridging/cohesive traction laws can be deduced by 
micro- or macro-mechanics models or experiments [6,10]. 

 
 

 
 

Figure 2 – Qualitative diagrams of bridging and process zones in brittle-matrix composites and quasi-brittle materials. 
(a) Schematic of a cohesive-crack (e.g. concrete). (b) Schematic of a crack bridged by uniformly distributed fibers (e.g. 

fiber-reinforced high-strength concrete, fiber reinforced ceramic matrix composite). (c) Schematic of a crack with 
discrete reinforcements (e.g. reinforced concrete, stitched laminate): the bridging action is well represented by localized 

forces [7-9]. (adapted from [5]) 
 
 
From a mathematical point of view, the only difference between the bridged- and the cohesive- 

crack model is in the form of the assumed crack tip stress field. In the bridged crack model this is 
singular (Fig. 4a) and when the crack is at the onset of growth the singular field is measured by an 
intrinsic fracture toughness, I ICK K� , or fracture energy, 2

I IC IC /K E�G = G , with E a representative 
Young’s modulus (for mode I problems).  In the cohesive crack model, the crack tip stress field is 
finite (non singular) and when the crack is at the onset of propagation the stress normal to the crack 
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plane at the crack tip equals the value of the cohesive tractions at zero displacement (Fig. 4b). In 
this sense the cohesive-crack model can be considered as a particularization of the bridged-crack 
model under the assumption of a vanishing crack tip stress-intensity  factor or a vanishing intrinsic 
fracture toughness, I IC 0K K� � . However, the two models are conceptually different as they 
presuppose different descriptions of the material leading to a different significance of the bridging 
tractions.  

In the bridged-crack model, the composite is theoretically simulated as a biphase material and 
two distinct factors contribute to its global toughness: the toughness peculiar to the matrix, 
described by ICK  or  ICG  (for mode I problems), and the secondary phase toughening mechanism, 
which is represented by the shielding effect that the bridging tractions develop on the crack tip 

stress field and described by 
c

b 0
0

( )
w

w dw�� �G  (for a mode I problem).  Crack growth is governed by 

the intrinsic toughness of the matrix and the bridging tractions, which control relative crack 
displacement, are governed by the properties of the reinforcing phase and by its interaction with the 
matrix. The bridged-crack model is then suitable for the description of separation processes that 
involve distinct physical phenomena (crack tip toughness + shielding), such as those of through-
thickness reinforced laminates, fiber reinforced high strength concrete or reinforced concrete.  

In the cohesive-crack model, the composite material is theoretically simulated as being 
homogeneous. Only the global toughening mechanism of the whole composite is defined, and it is 
represented by the shielding effect due to the cohesive tractions. The toughening mechanism 
peculiar to the matrix and explicitly represented in the previous model by ICG , is now merged with 
the toughening mechanisms developed in the process zone through the cohesive law and defined by 

bG . The damage process producing the growth of the crack is the same as that governing relative 
crack displacement along the process zone. The model is suitable to describe the separation process 
of materials characterized by a wide zone of microcracking, plastic deformation or crazing, when 
the matrix toughness is negligible compared to the energy dissipated in the nonlinear processes. 
However, the definition of appropriate cohesive laws (e.g. a two-part law, Fig. 3d) allows 
utilization of the cohesive-crack model in the description of materials characterized by distinct 
mechanisms of crack control.  

The mutual relations of the two models have been examined in [5,11] and will be discussed in 
the presentation. 

 
 
 
 

 
 

Figure 3 – Exemplary bridging and cohesive traction laws representing different nonlinear mechanisms: (a) pull out of 
short fibers or rods; (b) progressive debonding and yielding of continuous fibers; (c)-(d) cohesive mechanisms in 

concrete like materials and fiber reinforced concrete (adapted from [5]) 
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Figure 4 -  Conditions at the crack tip - (a) bridged-crack model: crack tip profile determined by LEFM; (b) cohesive-

crack model: smooth closure of the crack surfaces (adapted from [5]). 

Characteristic length scales and brittleness numbers 
The nature of the crack and the structure behavior of quasi-brittle materials and brittle-matrix 
composites can range from stable to unstable depending on material properties, structure geometry, 
loading conditions and external constraints. In particular, the mechanical response is not physically 
similar when the size scale of the body is varied. The two limiting solutions, given by Linear Elastic 
Fracture Mechanics and by the perfectly-plastic limit analysis may be used only for extremely 
brittle cases and for extremely ductile cases, respectively. The intermediate cases must be analyzed 
by resorting to a cohesive- or bridged-crack approach. 

Material brittleness and ductility 
A first indication of the fracture behavior expected in a given material is provided by the length 

of the process zone of a crack propagating in small-scale bridging conditions in a uniformly loaded 
infinite medium, lSSB (Fig. 5a). Small-scale bridging fracture is approached when the process zone 
evolves to a zone of constant length, much smaller than the length of the crack, the fracture 
toughness becomes a constant and the solution of the problem approaches that expected for a brittle 
crack (LEFM) when the material toughness includes the work required to fail the ligaments (Fig. 
5b). Using the model parameters defined in Fig. 3, for a rectangular bridging or cohesive law 
(�0(w)=�0u for w � wc and �0(w)=0 for w > wc), this length is a material property given by: 

 

 
0u

c
SSB 8 �

� Ewl �    , (1)  

 
for a cohesive crack with vanishing intrinsic fracture toughness [13], and 
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for a bridged crack [14]. The factor 8�  changes on varying the shape of the cohesive/bridging law 
but it remains of order unity. The length of the process zone in the small scale bridging limit 
characterizes the intrinsic brittleness of the material; its order of magnitude is equal to 106 mm in 
glass, 103 mm in ceramic-matrix ceramic-fiber composites, 100�101 in conventional 2D laminates 
and 102�103 mm in concrete, fiber-reinforced cementitious materials and through-thickness 
reinforced laminates.  
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The size of the cohesive/bridged zone depends on the groups wcE/��u and bIC /GG .  The 
dimensional group wcE/��u, which alone defines the process zone length in a cohesive crack model 
of the material, was first noted by Cottrell [15] as the material parameter correlating notch 
sensitivity of ultimate strength to notch size, and reconsidered by Hillerborg in its definition of the 
characteristic length, chl , to describe concrete like materials [16].  

The second dimensionless group, bIC /GG , is the ratio between the intrinsic fracture energy and 
the energy supplied by the bridging mechanisms; it appears in the definition of the small scale 
bridging process zone length when a bridged-crack approach is used and indicates a progressive 
transition toward material brittleness when bIC /GG  increases. The length scale Eq. (1) defines an 
upper bound solution to the length of the process zone for 0/ bIC �GG .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 -  Schematics of bridged cracks: (a) fracture process zone in small scale bridging conditions; (b) LEFM 

approximation of small scale bridging fracture; (c) small scale bridging limit in a slender body; (d) large scale bridging 
fracture in a member of finite size.  

 
 
In slender bodies, such as delamination beams (Fig. 5c), the length of the process zone in small 

scale bridging becomes a material/structure parameter that scales with the thickness 2t of the body 
and the scaling rule depends on the mode of fracture. The characteristic length scales for slender 
bodies have been derived in [17] and [18] and are given by: 

 
 I 1/ 4 3/ 4

SSB SSB( )l l t�      for mode I fracture in a slender body (3)  
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 II 1/ 2
SSB SSB( )l l t�      for mode II fracture in a slender body (4)  

 
where lSSB is given in Eqs. (1) and (2). 

In members subjected to uniform loading conditions and when the bridging traction law is an 
increasing function of the relative crack displacement (at least over a certain interval), a second 
limiting configuration can be approached, the ACK limit (from the seminal work of Avenston, 
Cooper and Kelly [19]). In this limit, which is characterized by a long crack entirely bridged by 
intact ligaments and is typically reached after the crack has grown several time a non-catastrophic 
characteristic length scale, ACKl , the critical load for crack propagation becomes constant.  The 
ACK characteristic length scales for infinite and slender bodies have been derived in [14] and [18]. 
For a prescribed mode I power bridging law, 0 N N( ) ( / 2)w w �� �� , in an infinite body, ACKl is a 
material property given by: 

 

1-�
-21+�

1+�
ACK Ic

1
4 2
El � � �

�
�� 	� 
 �

� �
G .  (5) 

 
and for a centered mode II crack in a slender beam of half thickness t, with a power bridging law, 

0 S S( ) ( / 2)w w �� �� , ACKl  is a material/structure property given by: 
  
 II 1/ 2

ACK ACK( )l l t� .  (6) 
 

Whether crack propagation across a long and unnotched member ( SSB ACK,h l l�� ) will be 
noncatastrophic (no ligament failure - ACK limit attainable) or catastrophic (extensive ligament 
failure - small scale bridging limit approached) can be estimated by comparing the orders of 
magnitude of SSBl  and ACKl .  If ACK SSBl l�� , failure will be catastrophic; if SSB ACKl l�� , 
noncatastrophic.  The presence of a notch favours catastrophic cracking.  If neither limit can be 
approached (e.g., SSB ACKl l�  or ACKh l�  or SSBh l� ) then large-scale bridging conditions prevail and 
detailed calculations are required. Figure 6 highlights failure transitions in a delamination beam 
subject to pure mode II conditions where the last condition applies.  
 
Structure brittleness and ductility 
To describe the fracture response of finite size bodies (Fig. 5d), dimensionless groups that depend 
on  SSBl  and a characteristic dimension of the members (e.g., h in Fig. 5d) have been proposed. To 
describe the response of concrete structures (KIC = 0), Hillerborg et al. [16] used the dimensionless 
group lSSB/h, which was also considered by Bao and Suo [3] to describe notch and hole sensitivity 
in ceramic and metal matrix composites, with h the notch or radius length. Carpinteri [20] 
introduced the energy brittleness number,

 
h

s
0u

b
E �

G
� ,  (7)  

as the parameter that synthetically controls the fracture behavior of elasto-softening materials 
(KI=0) and the size-scale transition from ductile to brittle response of geometrically similar 
structures loaded in flexure (note that sE/�u = lSSB, �u being the ultimate elastic strain of the 
composite). Physical similarity is found in the structural response if the parameter sE is kept 
constant, and physical non-similarity is found when sE varies, due for instance to variations in h; a 
transition from ductile to brittle responses is predicted when sE decreases. 
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Figure 6 - Transition from noncatastrophic (ACK limit approached, cr ACK� � �� � ) to catastrophic (small scale bridging 
limit approached) failure on varying the notch length, 0a , in a stitched plate subject to uniformly distributed shear 
stresses, � , acting along the crack surfaces. The problem is pure mode II and the bridging law is linear and non 
proportional ( 0 S 0 S( ) (0) / 2w w� � �� �  with IIC(0) 2� �� G  and b IIC/ 80�G G ). The critical stress for crack 

propagation in the ACK limit is  a material property, 1/ 2
ACK IIC3( )� �� G , and the characteristic length scale ACKl  a 

material structure property 1/ 2
ACK [ /(4 ) ]l E t��  [18]. For the stitched laminate tested in [10] with 2t = 7 mm, E = 49 

GPa, 0 S S( ) 12.7 51w w� � �  MPa and wc = 1.0 mm, ACKl  � 20 mm and SSBl  � 40 mm (adapted from [10]). 
 
 

A single dimensionless parameter also controls the structural brittleness of brittle-matrix 
composites (KIC � 0) characterized either by an increasing bridging relationship or by a rigid-
perfectly plastic relationship (Fig. 3b with wc � �). In these materials the length of the bridged 
zone progressively increases during crack propagation. Carpinteri et al. [7,8] introduced the 
brittleness number NP as the parameter that controls the flexural failure and the transition from 
ductile to brittle behavior in reinforced concrete: 

 
IC

5.0
u

P K
hN ��

� , (8)  

where � is the reinforcement ratio, �u is the minimum of the reinforcement stresses at the yielding 
and sliding limits, and h is the depth of the member (Fig. 5d). The same parameter describes the 
structural behavior of brittle matrix composites reinforced with uniformly distributed ductile 
reinforcements [9]. The product ��u defines the ultimate bridging stress, ��u (Fig. 3b). 

On the other hand, the structural behavior of brittle-matrix composites (KIC � 0) characterized by 
a bridging law with a critical value of the crack opening displacement, wc, beyond which the 
bridging tractions vanish, is controlled by two dimensionless parameters, given for instance by 

hl /SSB   or sE or NP and bIC /GG . 
The dimensionless groups, hl /SSB  and bIC /GG , have been used in the description of notch and 

hole sensitivity of ultimate strength in brittle and metal matrix composites (see [3]); sE or NP and 
bIC /GG  have been used in [5,11,21] to study the flexural failure of brittle matrix composites and 

compare the bridged-crack approach with the cohesive-crack approach in the structural analyses of 
flexural members. Figure 7 depicts failure transitions in flexural members [11].  

In the presentation, the concepts summarized in this section will be reviewed and applications 
will be presented that highlight scaling transitions in different materials and systems.  
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Figure 7 - Double brittle-ductile-brittle transition in the flexural response of a brittle-matrix composite with intrinsic 
fracture toughness ICK  reinforced with uniformly distributed discontinuous fibers (rectangular bridging law 

0 0u c 0 c( )   for ; ( ) 0  for w w w w w w� � �� � � � , with cw  a critical crack opening displacement). The dimensionless 
moment versus bending rotation constitutive response is controlled by two dimensionless parameters: the brittleness 
number 0.5

P 0u ICN h K��  [11,9] and b IC/G G . For a cementitions material reinforced with steel fibers with ICK = 50 
N/mm1.5, E = 40 GPa, 0u� = 4 MPa and cw = 4 mm (leading to b IC/G G =256), the curves labeled C, F and M describe 
the response of beams with depths h � 40 mm, h � 190 mm and h � 690 mm, respectively. The depths of the first two 
beams are in the range normally covered by the laboratory specimens and in this range a brittle-ductile  transition is 
typically observed when the beam depth increases [22]. However, in the steel fiber reinforced composite examined  
here, a  new ductile-brittle transition is predicted when the beam depth further increases above the transitional value 
given by the curve F, and the largest beam (curve M), which could represent a real structural component, is 
characterized by an unstable response. For larger/smaller values of the ratio b IC/G G , the critical value of PN  beyond 
which the response changes from globally stable to globally unstable increases/decreases and the reversal is not present 
when the bridging traction law is rigid-perfectly plastic ( cw �� ). The diagram has been obtained with the bridged-
crack model formulated in [11]. 

Modeling large scale bridging delamination fracture for the design of advanced composites 
The bridged- and cohesive-crack models have been used in the recent past [6,18,23-30] by the 
author and her collaborators to study single and multiple, quasi-static and dynamic delamination 
fracture in multilayered plates. In the presentation, results will be reviewed that highlight the 
significance of the bridged-crack approach in designing and optimizing new advanced composites 
with improved mechanical properties (e.g. laminates reinforced with a through-thickness 
reinforcement such as stitching or z-pinning).  

The problem of multiple delamination fracture, which is the typical outcome of extreme dynamic 
loading conditions, such as high velocity impact and blast, will also be examined. The effects of the 
interaction between delaminations and of nonlinear crack face mechanisms, including bridging by 
fibers and through-thickness reinforcements, contact and friction, on fracture characteristics, 
macrostructural response, damage and impact tolerance and energy absorption  will be discussed. 
Damage/impact tolerance can be substantially improved by adding a through-thickness 
reinforcement [10,6] and recent results indicate that energy absorption through multiple 
delamination fracture can be optimized if the system is designed so that cracks will form at 
predefined spacing [27,30]. Figure 8 highlights these behaviors.    

  

bridging tractions law 
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Figure 8 - The response of delaminated beams subject to out of plane dynamic loading is strongly controlled by the 
crack spacing, the material layup and the presence of large scale bridging conditions [27]. This figure depicts results on 
damage tolerance and energy absorption through multiple dynamic delamination fracture in homogeneous systems. 
Two delaminated clamped-clamped beams with equally and unequally spaced, central and traction free cracks have 
been loaded quasi-statically up to predefined values of the mid-span displacement stw that ensure a fixed value of the 
strain energy, L , in the systems. Crack growth was prevented during the static loading. The cracks were then allowed 
to propagate dynamically through the specimens with the mid-span displacement kept fixed at stw  (fracture 
criterion: cr�G G  with G the energy release rate and crG the intrinsic fracture energy of the base material). The strain 
energy introduced into the two systems was such that crack growth occurred in the regime of small to moderate crack 
speeds. Diagrams (a-b) refer to the unreinforced beams; diagrams (c-d) refer to the reinforced beams in the presence of 
large scale bridging mechanisms described by linear proportional bridging laws that could represent a stitched laminate 
(the bridging mechanisms act in the initially intact ligaments of the beams). The diagrams highlight important features 
of the response of these systems. – In both the reinforced and the unreinforced systems, (a) and (c), the equally spaced 
cracks propagate together (at a speed of approximately 0.1cL, with cL the longitudinal wave speed); in the unequally 
spaced system only the lower crack propagates and in the unreinforced system single growth occurs at much higher 
speed (approximately 0.2cL) and the crack quickly approaches the fixed boundary of the member. – The large scale 
bridging mechanisms reduce crack speed in the unequally spaced system and, after a phase of growth at reduced speed, 
lead to crack arrest in both systems; this indicates that the damage and impact tolerance of the material can be 
substantially improved by a through-thickness reinforcement when crack growth occurs in the low to moderate crack 
speed regime [24]. – In the unreinforced systems, the energy expended into the creation of new surfaces, (b), is much 
higher when both cracks propagate suggesting that if the beams were designed so that cracks will form at equal 
spacing, energy absorption through multiple delamination fracture could be optimized. – The presence of large scale 
bridging conditions minimizes differences in the responses of the systems with equally and unequally spaced cracks. 
(results obtained with the cohesive interface model formulated in [27,28]). 
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Conclusions
The presentation reviews basic concepts of the theory of crack bridging, with special focus on 
length scales and dimensionless groups that control fracture characteristics, size-scale transitions in 
the structural response and modes of failure of members of finite size and slender bodies. Recent 
results on static and dynamic single and multiple delamination fracture will be presented that 
highlight the significance of the bridged-crack approach in designing and optimizing new advanced 
composite materials and structures with improved mechanical properties. 
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