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Abstract. Two-term O’Dowd-Shih stress formula to assess the stress field in front of the crack is 
extended in order to include the influence of the third dimension in the element thickness direction. 
As a measure of the out-of-plane constraint, the Tz parameter introduced by Guo Wanlin, has been 
adopted. It is assumed that both the HRR term and the Q* parameter are functions of Tz. The Tz
function is computed numerically. The numerical results are approximated by analytical formulas. 
The comparison between proposed formulas and full 3D numerical analysis will be presented. 

Introduction – theoretical backgrounds for the 2D and 3D fracture mechanics 

In 1968 J.W. Hutchinson [1] published the fundamental work, which characterized the stress 
fields in front of a crack for non-linear Ramberg-Osgood (R-O) material: 
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where r and � are polar coordinates of the coordinate system located at the crack tip, �ij are the 
components of the stress tensor, J is the J-integral, n is R-O exponent, � is R-O constant, �o is yield 
stress, �0 is strain related to �o through �o =�o/E. Functions � ��� ,~ nij , � �nI n  must be found by 
solving the fourth order non-linear homogenous differential equation, independently for plane stress 
and plane strain [1,2]. Equation (1) is usually called the “HRR solution”. 

In 1993 O’Dowd and Shih [3,4], proposed simplified solution for the stress field which provided 
more exact results for plane strain and low constraint elements than the HRR formula 

� � � ������ ijHRRijij Q ˆ0�� . (2)

To avoid the ambiguity during the calculation of the Q-stress, O’Dowd and Shih suggested, that 
the Q-stress may be evaluated at the distance r=2J/�0 from the crack tip at �=0. The Q-stress is 
computed from the following relationship: 
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where (���)FEM is the stress value calculated using FEM (Finite Element Method) and (���)HRR is 
stress value evaluated form HRR solution, this term can be replaced by stresses computed for the 
small scale yielding model. The Q- parameter is a measure of the in-plane-constraint. 
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Guo extended the HRR analysis in a series of papers [5-7] to the three-dimensional (3D) case. In 
fact, he showed that the HRR singularity can be obtained for plane strain and plane stress only and 
in the 3D case the simplified, approximate formula in the form of Eq. (1) was proposed: 
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where Jfar is so called the far–field J-integral, computed along the contour located at the distance 
from the crack tip where the plan stress dominates. In Guo’s solution the thickness effect entered 
the final result through functions Tz(n,r,x3), In(n,Tz) and � �zij Tn ,,~ ��  where x3 is the coordinate along 
the crack front. The computer program and results of computations of In(n,Tz) and � �zij Tn ,,~ ��
functions were given by Galkiewicz and Graba [2]. The Tz parameter is defined as: 
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The Tz parameter changes from 0 for plane stress to 0.5 for plane strain. It can be considered as an 
out-of-plane constraint [8]. 
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Fig.1. Comparison results for 2D and 3D fracture mechanics for SEN(B) specimen.  

In O’Dowd and Shih theory the Q-stress depends on the specimen thickness since it is equal to 
zero for plane stress and is usually different than zero for plane strain. In Fig. 1. the stress 
distributions in front of the crack tip, computed using Eq.1, 2 and 4 for plane stress and strain as 
well as the finite element method (FEM) are compared. It is for one of tested by authors geometries 
and was selected because of low constraint specimen, the relative crack length is a/W=0.2. In theory 
the stress and strain fields change with a distance from the crack tip from the plane strain in the 
middle of the crack front, to the plane stress at the specimen surface or at the distance close to the 
element thickness. In Fig.2 the changes of a Tz parameter with a distance from the crack front for 
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various distances from the specimen axis  are shown. The computations were made for two different 
R-O exponents and different external loadings. 
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Fig. 2 Radial variation of Tz parameter for different load ratios and two work hardening exponent n.

In Fig.3 the changes of the Tz function along the crack front are demonstrated. From the Figs 2 
and 3 one can notice that the Tz function does not reach the value of 0.5, characteristic for plane 
strain, even at the very small distance from the crack front, which is of the order of a crack tip 
displacement. 

1. In – and out-of-plane constraint parameters in one formula  

In real elements made of elastic-plastic materials deformation is not small enough in front of the 
crack to justify an assumption that strains are small. For finite strains the opening stress components 
reach a maximum value at certain distance from the crack front. This maximum is located at about 
J/�0 distance from the crack front. At the neighborhood of this point the Tz value is usually much 
smaller then 0.5 (Fig. 3) and the plain strain model may provide conservative results.  

We postulate that the stress fields near the crack tip can be described using two terms. Both 
should take into account the three-dimensional nature of the mechanical fields. The first term is the 
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Guo term and the second one is a generalization of the Q-parameter. Thus, we propose the 
following formula: 
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where Q*(n,Tz) can be computed from the formula (8)  
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Fig. 3. Variation of Tz parameter through the specimen thickness for different load ratios and R-O 
exponent n.

Equation 6 allows for computing �ij values at arbitrary point in front of the 3D crack. An alternative 
formula, less exact but more convenient to use is proposed in the form 
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where Tm function is an average through the thickness value of Tz
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Since the Tz value strongly depends on a distance from the crack tip (Figs 2 and 3), the Q* value 
also depends on these distance. In this paper we compute the Q* parameter at the distance 2J/�0 by 
analogy to the O’Dowd and Shih approach. Also, we will compute it using the average value of Tz
over the distance (1�5)J/�0 since in this domain the most important failure phenomena take place. 

2. Details of numerical model  

In the numerical analysis, the single edge notched specimens in bending (SEN(B)) were used 
Dimensions of the specimens satisfy the ASTM E 1820-05 [9] standard requirements. Computations 
were performed for three dimensional geometry using small strain option. The relative crack length 
was a a/W={0.20 ; 0.50 ; 0.70}where a is a crack length and the width of specimens W was equal to 
40mm. Computations were performed using ADINA SYSTEM 8.4 [10]. Due to the symmetry, only 
a quarter of the specimen was modeled. The finite element mesh was filled with the 20-node three 
dimensional brick elements. The size of the finite elements in the radial direction was decreasing 
towards the crack tip, while in the angular direction the size of each element was kept constant. The 
crack tip region was modeled using 36 semicircles. The first of them was 20 times smaller then the 
last one. It also means, that the first finite element in front of the crack tip is 2000 times smaller then 
the width of the specimen. The crack tip was modeled as quarter of the arc which radius was equal 
to rw=5�10-6m (0.000125�W). The mesh consists of eight layers of elements (through half of the 
thickness of the SEN(B) specimen). The layer interfaces are located at x3/B={0 ; 0.119 ; 0.222 ; 
0.309 ; 0.379 ; 0.434 ; 0.472 ; 0.494 ; 0.5}. It should be noted that the layers become thinner as the 
free surface is approached. The layer in the middle of the specimen is twenty times thicker then the 
one near the free surface.  The whole SEN(B) specimen was modeled using 2488 finite elements 
and 12142 nodes.

Table 1. The mechanical properties of the materials used in numerical analysis. 

�0 [MPa] E [MPa] � �0=�0/E � n
� �0~ ����� In

for plane strain 
315

206000 0.3 

0.00153

1

3 1.94 5.51 
500 0.00243 5 2.22 5.02

1000 0.00485 10 2.50 4.54
1500 0.00728 20 2.68 4.21

In the FEM simulation, the deformation theory of plasticity and the von Misses yield criterion 
were adopted. In the model the stress–strain curve was approximated by the relation:   
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where �=1. The tensile properties of the materials which were used in the numerical analysis are 
presented in the Table 1. In the FEM analysis, calculations were made for sixteen combinations of 
the yield stress and the work hardening exponent n. The J–integral was calculated using the “virtual 
shift method” concept. In the numerical analysis 48 SEN(B) specimens were tested. 
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3. Numerical results 

In Figure 4 the results obtained for several models are compared. Since we assume that the FEM 
results for 3D model of a specimen are the most accurate, all results are presented as a relative 
differences with respect to this model. 
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Fig.4. Comparison proposed models of the description the stress field near the crack tip with 
existing models for SEN(B) specimen: a/W=0.20, B=10mm, W=40mm, �0=500MPa, n=10,
E=206000MPa, �=0.30, �0=�0/E=0.00243 (�FEM for x3/B=0.000 (a) and x3/B=0.379 (b)). 

Figures 4 and 5-6 are representative of other results received in this research project. More results 
will be published soon. Guo results are more exact than received using the HRR field. Guo included 
into analysis the out-of-plane constraint effect. O’Dowd and Shih approximation as well as Yang, 
Chao and Sutton [11] results are also more exact than received using the HRR formula . They take 
into account the in-plane constraint influence. Results obtained using our extensions of the Guo, 
O’Dowd and Shih or Yang, Chao and Sutton models are more exact and they include both the in-
plane and out of plane constraint. 

4. Summary 

The analytical-numerical hybrid method proposed to assess the stress field near the crack tip for 
elastic-plastic material provides better accuracy than the milestone results by Hutchinson [1], Rice 
and Rosengren [12] or later excellent papers by Guo[5-7], O’Dowd and Shih [3,4] or Yang, Chao 
and Sutton [11]. It requires the numerical efforts to compute the Q* function, which depends on 
several variables. The Tz function depends on many variables. They are: Ramberg-Osgood power 
exponent, n, �0/E, distance from the crack tip, r, x3 coordinate, the element thickness and the 
external loading.  However, it is possible and the research is on the way, to receive a simplified 
semi-analytical formulas both for Tz (it was done for small scale yielding by Guo) and for  the Q*
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function with the coefficients computed numerically. Authors of this papers are working on such a 
catalogue.   

Eqs 6 and 7 contain two parameters which allow to include both the in-plane and out-of-plane 
constraint measures into models to compute an actual value of fracture toughness. Both measures of 
geometrical constraint are important for ductile materials [8].  
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