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Abstract. The analysis addresses a typical failure development pattern consisting of a system of 
multiple surface cracks leading to and branching along or near the interface between the coating and 
the base material. The process is driven by thermal stresses. Due to the high temperature gradients 
during the fabrication process, usually a net of surface cracks develops, which gives the appearance 
of a granular structure of the surface. A periodic array of parallel surface cracks is assumed. A ‘‘unit 
cell’’ or single cracked segment attached to the substrate is analyzed instead by assuming the 
channel cracks are spaced more or less uniformly and perfectly aligned in parallel in the transverse 
direction of the coating. The problem is solved using both FEM combined with the reciprocal 
theorem and the technique of distributed dislocations. Existing semi-analytical solution for 
singularities in anisotropic trimaterials is applied.  

Introduction 

This is a matter of evidence that, in layered materials, multiple mode I surface cracks, often driven 
by thermal stresses, develop from a free surface and terminate at the interface. These cracks usually 
exhibit regular spacing that is of the same order of magnitude as the thickness of the fractured layer. 
It was found that there exists a ratio of fracture spacing to the layer thickness when the normal stress 
acting perpendicular to the fractures near the free surface changes from tensile to compressive [1], 
thus prohibiting inception of further cracks unless they are driven by mechanisms other than a pure 
extension, or there are flaws that significantly perturb the local stress field between the fractures. 
Under increasing applied strain the existing fractures continue to open to accommodate the applied 
strain. This phenomenon is called fracture saturation.

The aim of the paper is to generalize the analysis to orthotropic and transversally isotropic 
materials and to evaluate the generalized stress intensity factor (GSIF) H as a function of the ratio of 
fracture spacing to the layer thickness, especially near the critical value of this ratio, taking into 
account the presence of residual stresses. Further, there will be examined the competition between 
penetration and debond for periodically distributed edge cracks especially near the critical value of 
the ratio of fracture spacing to the layer thickness. 

Analysis 

Dislocation technique approach. Edge cracks in the surface layer are modeled by distributed 
dislocation technique. Choi and Earmme [2] used the method of analytic continuation and the 
Schwarz-Neumann alternating technique to obtain a solution for dislocation in an anisotropic 
trimaterial. The solution is expressed in terms of infinite series for the analytic functions from which 
the elastic field can be derived. Assume, that the regions 0y ≥  and 0 y h≥ ≥ −  are occupied by 
material 1 and 2, respectively. Both materials are perfectly bonded along the interface 0y = . The 
superscripts I, II refer to the material 1 and 2 respectively. The following relations for potentials 
were obtained 
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where the potential function for an isolated dislocation located at the point (xo,yo) in an infinite 
homogeneous anisotropic medium is 

( ) ( )lno z q zα α αΦ = − ς , (3) 

where ,   =1,..3o ox p yα ας = + α , ( ) 11 1
2 2

−
= + =q M B B b Fb

π π
where [ ,0]T

xb=b  is the Burgers 

vector, 1−=M L , i=B AM , pα are three distinct complex numbers with positive imaginary parts, 
which are obtained as the roots of the characteristic equation 

( ) 2
1 1 1 2 2 1 2 2det 0i k i k i k i kc p c c p c� �+ + + =� 	 , (4) 

where cijkl is the tensor of elastic constants. The matrices A and L are given by 

( )2 1 2 2i k i k i kL A c p cα α α= + , (5) 

where Akα denotes the eigenvector corresponding to the eigenvalue pα above. The matrices C and G 
in Eqs. 1 and 2 are then defined as  
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The preceding relations were already used for modelling of a single edge crack, cf. [3]. In the case 
of modelling a periodic array of edge cracks illustrated in Fig. 1a, we start with a periodic array of 
dislocations, see Fig. 1b. Assume a periodic array of edge dislocations distributed along the line 
y=y0 . The potentials ( )o zαΦ  corresponding to the homogenous solution then read 

( ) ( )0ln ( )II II
o

m
z q z md p y

∞

=−∞

Φ = − +�α α α . (7) 

The potential ( )zαΦ  for 2z ∈  can be written in the form 
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Figure 1a: Scheme of an array of periodically 
distributed edge cracks 

Figure 1b: Scheme of periodically distributed 
dislocation arrays

The stress component ( , )II
xx x yσ then follows as 
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Using the formula 1 cot( )
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Similarly, the potential ( )o zαΦ in Eq. 7 can be written as ( ) 0cot ( )II II
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. By 

substituting this result into the recurrence formula for ( )n zαΦ , the infinite series in Eq. 10 are 
replaced by their summations. 

Now, the edge cracks are simulated by distributed dislocation arrays with the dislocation density  
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where (0, )xx y∞σ is the stress acting in the layer if the cracks were absent. Observe that due to 
symmetry of loading the shear tractions are zero. The substitution 

0 0
1 1sin ( ) sin sin ( ) sin 2
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II II II IIp p p pt y h y s y h y t
d d d d

� � � �� � � � � � � �
= + − + − + − +� � � �� � � � � � � �� � � �� � � � � � � �� � � �

α α α απ π π π  (13) 

allows to rewrite Eq. 12 into the form 
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The dislocation density is sought in the form ( ) ( ) ( ) ( ) ( )1 11 1** 1 1f s s s g s− − −= − +δ δ , where g(s) is a 

bounded function, and 1-δ1 is the stress singularity exponent. This choice means that ( )** 1f −  must 
vanish, i.e. that crack faces at the mouth are forced to be parallel and the solution is over-
constrained. This incorrect end-point behaviour at the crack mouth has a negligible effect on the 
calculated stress intensity factor, however, it can influence the stress σxx (x,-h) in between the edge 
cracks. The integral equation may be solved using the Gauss-Jacobi quadrature. The function g(s) is 
sought in the form of linear combination of Jacobi polynomials ( ) ( ),
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where ( ,0)iy h∈ −  are collocations points at the crack faces where the stress equilibrium is 
controlled, F(n1,n2;n3;x) stands for the hypergeometric function, Γ(n) is the Gamma function and i= 
0.1..NB –1. Once the dislocation density is found, the potentials ( )zαΦ are evaluated and the 

displacement and stress fields can be obtained via formulas
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GSIF H is calculated using the function-theoretic methods, see e.g. [3].  
FEM and ΨΨΨΨ-integral approach. In the absence of body forces the reciprocal theorem states that 

the following integral is path independent  

( ) ( ) ( ), dij i j ij i jn v n u s
Γ

� �Ψ = σ − σ� 	�u v u v , (16) 

where Γ is any contour surrounding the crack tip and u, v are two admissible displacement fields. If 
the following displacement fields are considered ( ) ( ) ,i

i ix rδ= = θu u� ( ) ( )j
j jx rδ= = θv u� , one 

can show that the contour integral Ψ is equal to zero for -δi ≠ δj and non-zero if -δi = δj. Since the 
basis function corresponding to coefficient f1 =H in the asymptotic expansion for u is ( )1rδ θ1u , due 
to the former “orthogonality” conditions it holds  
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Thus, the GSIF H= f1 can be computed as follows: 
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Since the exact solution u is not known, a finite element solution uh can be used as an 
approximation for u so to obtain an approximation for H, [3]. Due to the path independence, the Ψ-
integral standing in the denominator of Eq. (18) is evaluated along an infinitesimal path that shrinks 
to the crack tip. To this end, the asymptotic stress field near the crack tip modelled as a continuous 
distribution of dislocations with density function, ( ) ( ) 1 1 , 0k o k o of y Hv y yδ −= − <  (vk is a 
corresponding eigenvector) can be used. Observing that the problem is linear, the results may be 
applied to any combination of mechanical, thermal and residual stresses by using superposition. 

The competition between penetration and debond for periodically distributed edge cracks. 
A necessary condition for a crack to deflect along the interface is ( )i p d pG GΓ ψ Γ < , where Γi(ψ) 
is the interface toughness at a phase angle of loading, ψ, Γp is the toughness of the next layer, Gd is 
the energy release rate for a crack deflected at the interface and Gp is the energy release rate for a 
penetrating crack. Deflections of periodically distributed edge cracks along the interface would 
increase the critical value of the ratio of fracture spacing to the layer thickness. Consider a 
perturbation of the domain Ω with periodically distributed edge cracks impinging the interface. The 
perturbation of each of the edge cracks is a deflected (double) crack extension of length ad or 
penetrating crack extension of length ap with the small perturbation parameter ε defined as 

1,   ,p da L a a aτ = =� , where L is the characteristic length of Ω. A second scale to the problem 
can be introduced, represented by the scaled-up coordinates rρ = τ  which provides a zoomed-in 
view into the region surrounding the crack. The displacement Uτ of the perturbed elasticity problem 
due to the crack extension can now be expressed in terms of the regular coordinates r,θ and the 
scaled-up coordinate ρ,θ as ( ) ( ) ( ), , ,rτ τ τθ = τρ θ = ρ θU U V , where the definition of the function Vτ

has been introduced, simply by a change of variable from r to ρ. Consider now the asymptotic 
expansion for Uτ (which is also known as the ‘‘outer expansion’’) and for Vτ (which is also known 
as the ‘‘inner expansion’’). Outer and the inner asymptotic expansions read 
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The determination of the coefficients (((( ))))1d pK proceeds in a similar fashion as for H. (((( ))))1d pK are 
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The incremental energy release rate (ERR) Gd(p) is defined as 

( )
( ) ( ) ( )

( ) ( )( )

( )
( )

( )
( ) ( ) ( )(

( ) ( ) ) ( ) ( ) ( )( )

1 1 1

1 1 1 1 1

0
0 0

0
1 ( )1 1

2 12
1 1 ( ) 1 1

1
2

1 1, .. ,
2 2

1.. , ..,
2

kl k l kl k ld p
d p d p d p

d pd p
d p d p

d pd p d p

W W WG n U n U ds
L L L

H K
L L

H H K
L

Γ

−
−

− −
−

−= − = − = − − =

� �= − Ψ = − Ψ + +� 	

+ = Ψ +

� U U

U U u u

u u u

τ
τ τ

δ δ δτ

δ δ δ δ δ

δ σ σ
τ τ τ

τ ρ θ ρ θ
τ τ

τ ρ θ τ ρ θ ρ θ

 (21) 

where τd(p) = ad(p)/L. Observe, that line Γ is any contour surrounding the crack tip and the crack 
increment and starting and finishing on the stress-free faces of he primary crack. Among others, the 
crack extension faces along ap or ad respectively, form an admissible contour which allows to 
rewrite Eq. 21 as a work done along ad(p) and leads to the classical virtual crack closure method  
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where the integral along ad(p) means along two faces ( ) ( ) and d p d pa a+ −  and ΔUτ denotes 

( ) ( )l l lU U U
+ −τ τ τΔ = − where the sign + or – refer to upper or lower crack face. The expression (22) 

is rather difficult to handle numerically since the singularities govern the behaviour along ad(p).
Nevertheless, it offers an idea to calculate the fracture mode mixity based upon the energy release 
rate (ERR). The ratio of the debonding to the penetrating ERR follows from Eq. 21 as 

12 1

1

1

d d d

p p p

G K a
G K a

−
� �
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� �

δ

. (23) 

The fracture mode mixity based on the stress intensity factor (SIF) concept is usually represented 
by the so-called local phase angle ψK defined by 1 2

KiK K iK K e ψ= + = where K is the complex 
stress intensity factor (SIF), associated to a reference length l according to the proposal by Rice [4] 
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The ERR based fracture mode mixity originally results from the application of the virtual crack 
closure method. Consider a small but finite length ad of a virtual crack extension along the interface. 
The energy release rate (ERR) associated to this crack extent is 

( ) ( ) ( )d d dI d dII dG a G a G a= + , (24) 

where 

( ) ( ) ( ) ( ) ( ) ( )22 2 12 1
0 0

1 1,0 ,   ,0
2 2
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dI d d dII d d
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G a s u a s ds G a s u a s ds
a a

= σ Δ − = σ Δ −� � . (25) 

The Mode I component GdI corresponds to the energy released by normal stresses acting through 
crack face opening displacements, and Mode II component GdII corresponds to the energy released 
by shear stresses acting through crack face sliding displacements. The energetic mode mixity 
GdI/GdII for interface crack depends on ad . The associated phase angle ψG is defined as 

( )
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2tan ,   0
2

dII d
G G

dI d
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G a

πψ = ≤ ψ ≤ . (26) 

Instead of Eqs. 25, the concept of Ψ- integral can be applied for to evaluate the phase angle ψG. First 
observe that Eq. 25 can be written in the form 
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On the other side, assume any contour Γ surrounding the crack tip and write 
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where tl is he unit tangential vector of Γ. Thus, the ERR based phase angle ψG for deflected crack 
can be calculated by substituting for GdI and GdII from Eq. 28 to Eq. 26. Note that the ERR and the 
SIF based measures of mode mixity for an interface crack, phase angle ψG and ψK, are related by [5] 

( ) ( )
( )

( )
( ) ( )2

sinh 2 1 2
cos 2 cos 2 2 ln arg arctan 2 ,  

2 12 1 4

oscillation index of the interface crack,

d
G K
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(29) 

with Γ(.) being the gamma function.  
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Numerical results 

Numerical calculations were specialized to aligned orthotropic materials. The materials were 
characterized by two dimensionless elastic parameters γ and ρ ( )11 22 12 66 11 22, 2s s s s s sγ = ρ = +  ,

where sij are the material compliances and defined in the conventional fashion. The relative stiffness 
between these materials – coating and substrate – is measured by the two generalized Dundurs 
parameters α and β [6]. The developed residual stresses are characterized by the temperature change 
ΔT between the processing temperature Tp and current temperature T, the thermal expansion ratios 

1 2T T Tγ α α==== for both materials, and the thermal expansion mismatch between the materials 

1TΔα .The following example refers to case when the isotropic surface layer is formed by ZrO2 with 
thickness of 13 μm deposited on Al2O3 substrate of thickness 40 μm reinforced by aligned SiC 
whiskers with the volume fractions Vf = 0.1, 0.3. For Vf = 0.3, the corresponding values of 
parameters introduced above are as follows:  

6 1
11, 1, 0.97, 1.003, 0.33, 0.067, 1, 0.94, 3.01 10II II I I II I

T T T K− −γ = ρ = γ = ρ = α = β = γ = γ = Δα = ⋅ . The 
value of the singularity exponent is δ1= 0.56. Fig. 2a shows a distribution of the stress component 
σxx between edge cracks just below the free surface for different spacing to layer thickness ratios. It 
should be noted that only residual stresses due to the uniform temperature change ΔT = 800°C were 
considered, i.e. no applied loads were prescribed. 

Figure 2a: Distributions of the normal stress 
component σxx between edge cracks for different 
spacing/layer thickness ratio d/h, Vf = 0.3.

Figure 2b: GSIF normalized by the stress-free 
misfit strain 1T TΔα Δ  as a function of the 

spacing/layer thickness ratio d/h

It is seen from the Fig. 2a that, in the given case, the critical spacing to layer thickness ratio, i.e. 
the ratio at fracture saturation, is about of 2.9. Fig. 2b shows the GSIF as a function of the spacing 
to layer thickness ratio. Apparently, GSIF abruptly decreases when approaching the critical spacing 
to layer thickness ratio. Further results concerning the effect of elastic properties and delamination 
will be presented at the ECF17 meeting.  
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