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Abstract. The process of cutting and machining is analysed using concepts developed in the 
fracture analysis of beam specimens. Increasing loads and decreasing tool rake angles lead to a 
sequence of deformation processes from elastic bending, elastic-plastic bending and finally shear 
yielding in the chip.  The conditions for each mode to occur are identified.  Fracture toughness is 
included in the analysis as is, in addition, the notion of root rotation at the crack tip.  This gives rise 
to the tool touching at the crack tip under some circumstances during which energy is transferred 
directly to the fracture process. The tool-chip interface is characterised by Coulomb friction and an 
adhesion toughness. Experimental data for polymers and metals taken from the literature is 
analysed. Values of fracture and adhesion toughness are deduced as well as yield stress and friction 
coefficients. There is evidence of work hardening and also that the root rotation affects the angle of 
the shear plane. Chip curling is also discussed.  

Introduction 
The analysis of machining processes has a long history [e.g. 1-3] with several reviews available 
[e.g. 4].  The motivation was to improve machine tools and the analysis focussed on describing 
friction effects and the plastic deformation of chip formation [5-7].  The latter was the subject of 
considerable effort using slip line theory and attempts were made to resolve the various solutions 
via experimental studies [8]. 

The issue of whether fracture and cracks played any part in the process has a complex history.  
This was proposed by Reuleaux in 1900 [9] but subsequently abandoned because the energies were, 
erroneously, said to be too small.  In addition, the absence of visible cracks was thought to be 
important.  Atkins has firmly established that these omissions were wrong and that the fracture 
terms are important in any cutting analysis [10, 11]. 

The similarity of cutting a layer from a surface and splitting a cantilever specimen with a wedge 
has been observed previously [12] and it is therefore possible to take analyses developed for double 
cantilever beam specimens and apply them to cutting.  This includes the notion of root rotation at 
the crack tip and plasticity in the arms [13]. 

In this work, these ideas are explored in greater detail and are extended to include the case of 
when the tool tip touches the crack tip. The inclusion of shear yielding in the beam (chip) and the 
issue of chip curling are also addressed.   

Figure 1 shows the three stages of the deformation as the load is increased and/or the rake angle 
of the tool is decreased.  In Figure 1(a) the deformation is elastic, apart from a thin layer of plastic 
deformation on the inner chip surface and cut surface of the workpiece.  In such cases the chips are 
straight, apart from a small amount of inward curvature arising from the plasticity on the chip.  In 
Figure 1(b) the loads have increased sufficiently to involve plastic bending in the arm which creates 
chip curling, though some curvature is recovered elastically. The ‘crack tip touching’ condition is 
reached when the tool tip reaches the crack tip.  This is also shown in Figure 1(b).  In Figure 1(c) a 
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further increase in load or decrease in rake angle induces a shear deformation in the chip along a 
slip plane as well as bending. Under these circumstances the crack tip touching condition is more 
easily achieved. 
 

 

      

a 

Crack tip touching 
condition 

b 

 
c  

Figure 1: Three stages of deformation: (a) Elastic; (b) Plastic bending and (c) Shear. 
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Elastic Cutting. 

The orthogonal cutting of a strip of thickness h and width b by a sharp tool of rake angle � is 
considered first as shown in Figure 2.  The chip deformation is assumed to be elastic so that no 
energy is dissipated in bending the chip.  The tool is driven at a fixed speed by a horizontal force Fc 
which generates a transverse force Ft. (The conventions adopted here for �, Fc and Ft are those 
normally used in the machining literature). 

 
Figure 2: Orthogonal cutting at a depth, h. 

 

The analysis is similar to that used for wedge splitting fracture tests [12] with two important 
additions made for cutting.  Firstly there is assumed to be a root rotation �o at the fracture point 0.  
This can be modelled [13] as a beam on an elastic foundation such that, 

0
0R� ��  

where R0 is the radius of curvature of the chip at 0 and � is a length correction arising from the 

transverse stiffness of the chip. For isotropic materials, this is given by, 

1
4, 6 0.64h� � �� � � �  (2.2) 

The second assumption is that at the contact point A, Coulomb friction operates such that there is 
a relationship between the shear force, S, and the normal force, N.  There is additionally an 
adhesion term between the tool and the chip given by Ga.  Although unusual, it has been found 
necessary to include this adhesion toughness when analysing the machining of polymers because 
the chips become hot and stick to the tool rake face.  Thus for a tool with a rake angle of � we have 
from equilibrium:  

The dissipation processes along the tool-chip contact are modelled as:  
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cos

cos sin

c t

c t

F FS s in
b b b
and

F FN
b b b

� �

� �

� �

� �

 (2.3) 

aG
bb
�� 	 NS  (2.4) 

where 	 is the coefficient of friction between the tool and the chip. On substituting into equation 
(2.3) gives: 

cos sin
t c aF F GZ

b b � 	 �
� �

�
 (2.5) 

where  


tan tan
1 tan

Z �	 � � �
	 �
�� �
�

�  where 	 = tan � 

Steady state fracture problems such as this can often be solved by an equilibrium approach or via 
energy.  This analysis starts using the former and deduces the bending moment, M, at a general 
point B where the surface slope is 
� as shown in Figure 2:  


 � 
 �0 cos sin2 2
c tF FM h hx

b b b
� � 
 
� �� � � � �� �� �

 

and  (2.6) 

sin cos
2 2

c tF Fd M d h dx h
d b b d b d
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� � �� �� � � � �� � � � �� � � � �
�
�
�

 

Now 

cos
2

dx hR
d






� �� � �� �� �
 (2.7a) 

sin
2

d hR
d
� 




� �� �� �� �
 (2.7b) 

and  

tand
dx
� 
� �  (2.7c) 

For elastic bending, 

3

3

1 12 1
12 2

M d M Eh dRand
R Eh b d b R d
 


� � � �� � �� � � �� � � �
 (2.8) 
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and on substituting equations (2.7) and (2.8) in equation (2.6) gives 

3

3

1 sin cos
12

c tF FEh dR
R d b b


 



� �

 

This may be integrated and noting that R �� at 
2
�
 �� �  we have, 


 � 

3

2

1 cos sin sin cos
24

c tF FEh �
R b b


 � 
� � � � �  (2.9) 

At 
 = �0 << 1,  R = R0  and so, 


 � 
 �
3

2

1 1 sin cos
24

c t
0

0

F FEh
R b b

� �� � � � � . 

The energy release rate at 0 due to bending is given by, 

2 3

3 2

6 1
24

0
b

0

M EhG
Eh b R

� �� �� �� �
 

and there is a contribution from tF
b

 acting at 0 which is given by: 

t t
t 0

F FdG
b dx b

� �� � �  

and hence the total energy release rate is expressed in equation (2.10), 


 �
3

2

1 1 sin cos
24

t c t
b t 0

0

F F FEhG G G
R b b b

� �� � � � � � � �  (2.10) 

and on substituting from equation (2.5) 

cos1
cos sin cos sin

cFG
b

�	
� 	 � � 	 �

� �� � �� �� �� �
aG  (2.11) 

It is noteworthy that since there is no change in elastic energy, then for 0, 0, c
a

Fand G G
b

	 � � �  

i.e. there is no dissipation.  For finite 	  and  then aG .cF G
b
�  

This result may be obtained rather more simply via energy.  For a steady state in which the crack 
and the load move forward by dx then the increment of external work is,  

ext cU Fd d
b b

� � �� �� �
x  

The dissipated energy is, 
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cosd c t
a

U F FSd dx G
b b b b

	 �� �� � � �� � � �� � � �� �� � � �� �
dx  

and on substituting for tF
b

 from equation (2.5) gives 

cos
cos sin cos sin

ad c GU Fd d
b b

�	
� 	 � � 	 �

� �� � � �� �� � � �� � � �
x  

Now 

ext dU UG dx d d
b b

� � � �� �� � � �� � � �
 

which gives equation (2.11). 
It should be noted that for cutting a material in which G = Gc the cutting force, from equation 

(2.11), becomes 


 �1 1 tan
1 sin1

cos

c
c

F G
b

	 �
�	
�

� �
� �
� �� ����� �� �� � �� �� �� �

aG� ��  (2.12) 

i.e. cF
b

 is independent of h but a function of both 	  and Ga as expected.  

If tF
b

is also measured then, from equation (2.5), 	  and Ga may be found and then Gc determined 

from equation (2.12). 

Crack Tip Touching 
Another aspect of the proposed model is the inclusion of crack tip rotation and displacement, 
permitting the tool tip to reach point 0 as the force is increased.  As the force is increased further 
there would be a reaction on the tool but R0 would thereafter remain the same.  The crack tip 
touching condition is shown schematically in Figure 1(b) and may be expressed, using equation 2.7 
as: 

2

0

tan cos
2o
hR d

� �

� � 

�

� �� � � �� �� �� 
  

from equation 2.7(a) and 

2

0

sin
2o
hR d

� �

� 

�

� �� �� �� �� 
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from equation 2.7(b).  Therefore, 

�
�

���
��


�

�

�
2

0
1 )cos(

cos
1)(

2
dRfhh  

where  

f1 = 1 sin
cos

�
�

�  

Here we may use equation (2.9) to find R as a function of 
.  The general case with friction and 
Ga is rather complicated for this large displacement solution but a useful result may be found by 

using the 	 = Ga = 0 case for which tant cF F
b b

�� � . Thus equation (2.9) becomes, 


 �2 cos
cos

0R
R


 �
�
�� � �� �� �

 

and hence  


 �
 � 
 �
2

1
0

12 cos
2 cos0

h
2f d

R

� �

� 

�

�
� �

� � � �� �
� �

� f� 
  (3.1) 

where f2 must be evaluated numerically.   
The root rotation angle at this condition is given by: 


 �
2

2
2 1

2sin
2

2

0

0

fh
h f fR

���
�

�
� �

� ��
 (3.2) 

where � implies crack tip touching and the subscripts 02 represents the elastic, frictionless 
conditions.  A further useful solution is obtained by assuming that R remains constant at R0 and in 
this case equation (3.1) becomes, 


 �12
2 0

h
1f f

R
�

� �
� �� �

� �
 (3.3) 

and  

sin 1 10 f�
�
�  (3.4) 

where subscript 01 denotes this constant R condition at R0.  
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Table :1 Crack tip touching functions 

 
� (o) 011 �� 2  02�
-20 >1 - >1 
-10 >1 - >1 
0 1.00 - >1 
10 0.84 1.03 0.90 
20 0.70 0.88 0.77 
30 0.58 0.74 0.66 
40 0.47 0.60 0.55 
50 0.36 0.47 0.43 
60 0.27 0.35 0.33 
70 0.18 0.23 0.22 
80 0.09 0.12 0.11 
90 0 0 0 

 

Table 1 shows values of f1, f2, , and  for the practical range of values and there is only 

about 20% difference in the results for the two assumptions.  Clearly the solutions have no meaning 

for small � values since sin >1 and indeed 

01�
�

02�
�

�

0�
�

2 0

h
R

� �
�
� �

�  must be < 0.15 to have any significance 

because of the limitations of beam theory, i.e. a strain of 15%.  These touching solutions are thus 
only likely to occur for � > 70o and a simple approximation for the condition would be,  

1sin
2 2

0
0 0

0

hf and
R

�� �
�

� �
� � �  (3.5) 

If touching does occur then there would be a force per unit width, Ge, acting on the tool tip which 
goes directly into G from equations (2.17), i.e. 

b tG G G G� � � e  (3.6) 

with  

2 2

26 2 24b b 0
0

Eh h EhG G
R

�
�

� �� �
� � �� �

� �
 

and 

t
t 0

FG
b
�� �  

Equation (2.10) for G is also modified in that cF
b

becomes c
e

F G
b

� ��� �
�
�  and similarly in equation 

(2.5) to give,  
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b
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The same expression may be derived by the energy route but a solution can only be found if Ge 
can be determined.  From equation (3.6)  

1
b 0e

FG G G
b
�� � �  

and from equation (2.5) 

�	� sincos �
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�
��

�
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e
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b
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and hence 

1
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0
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� �
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and on substituting into equation (3.7) we have, 
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0
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 (3.8) 
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1
24cos sin 1

cos sin
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� 	 �

�
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The approximate touching condition is given by equation (3.5), i.e. 

1 sin
cos0

��
�

��  

and hence, 


 �

 �

1 sin cos
1

cos cos sin0Z
� 	 �

�
� � 	 �
� �

� �
�

 

and on substituting into equation (3.8) we have the rather surprisingly simple result: 

2

1 sin
24 cos

c
a

F EhG G
b

	 �
� �

�� �� � � � �� �
 

For tests on materials with a fixed G = Gc value cF
b

 now has a linear dependence on h, thus: 
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2

1 sin
24 cos

c
c a

F EG G h
b

	
� �

��� � � �� �
� �
�  (3.9) 

This is shown schematically in Figure 3, together with the non touching case, expressed by 
equation (2.12).  The transition between the two conditions occurs at the thickness  given by: �h

�
224

1 sin
c

a
Gh G

E
�

�
�� �� �� �

�
�  (3.10) 

  
Figure 3: Force per unit width as a function of cut thickness for elastic cutting. 

Plastic Bending 
In many cutting and machining operations the yield stress of the material is exceeded during the 
formation of the chip which results in a permanent curvature or curling.  The most common 
manifestation of this is the curling of thin wood shavings during planing.  The yielding is be 
modelled here by assuming no work hardening, such that for: 

,Ye e Ee ! �  

i.e. linear elasticity as assumed in the previous sections and for: 

,Y Ye e   " �  
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Figure 4: Stress distributions in the chip for plastic bending. 

 

The stress distributions for plastic bending are shown in Figure 4.  The distribution shown as line 
(1) is for first yielding and the strain at the outer surface is, 

2
Y

Y
p

he
E R
 � �  

where Rp is the minimum radius for elastic deformation.   
The moment to give this condition is, 

2

6
Y hM

b
 �  

and for moments greater than this value the plastic regions spread inwards giving an elastic zone of 
width c such that,  

22 11
4 3
Y hM

b h
 � �� �� �� � �� � �� �

c
��  (4.1) 

At the interface the strain is eY so that, 

2Y
ce
R

�  

where R is the current radius of curvature (R<Rp) and hence, 

2
2 11

4 3
Y

p

hM
b R

 � �� ��� � � �� �� �� �� �

R �  (4.2) 

where  
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2

4 p
h b M # �  is the plastic collapse moment when c = 0.   

This form of analysis is widely used in analysing plastic bending in fracture tests, particularly 
peeling [14]. 

 
Figure 5: Relationship between radius of curvature and bending moment. 

The moment-radius of curvature relationship for plastic bending is shown in Figure 5.  For 
1 1

pR R
$  we have the elastic form from equation (2.8) i.e. 0-a and for 1 1 ,

pR R
�  a-b we have the line 

from equation (4.2).  The line 0ab represents the initial bending up to the moment at point 0 in 
Figure 2 i.e. M0.  For the steady state, the unloading to point A in Figure 2 is the line b-c in Figure 5 

which is parallel to 0-a and at A, when 0M
b
� , has the residual curvature of 1

R
 given by 

3

1 1 12 0

0

M
R Eh bR

�� � �� �
�
�  (4.3) 

The elastic unloading is governed by the same equations as used in the elastic case and equation 

(2.9) now has the boundary condition that 
2

R R at �
 �� � �  and hence 


 � 
 �
3

22

1 1 cos sin sin cos
24

c tF FEh
R b bR


 � 
� �
� � � � �� �

� �
�  

At  as before and we have: 00 ,1 RR �$$� �
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 �
3 1 1 1 sin cosc tF F FEh � � �
� �

� � � � �  2224
t

0R b b bR
� �
� �

and on substituting for R  from equation (4.3) we have 


 �
2

3

1 6 1 sin c0 0 t c t
0

M M F F F
b R Eh b b b b

� �
� �

os
0

�� �� � � � �� � � �� �� �
 

The first term is the area A+B+  in Figure 5 and the second term is the area C so the two terms 
give A+B.   For an elastic relationship this reduces to, 

C

2 36 10M Eh � �� �
3 224b

0

G
Eh b R

� � � �� �� � � �
 

but  for the elastic-plastic case equation (4.2) must be used,  


 �2 2
1 3 11 1 1 sin

43 3
t c t

0 0
0 0

G F F Fk
b b bk k
� � cos�

� �� � �
� �� � � �� � � �� �� � � �� �

� � � � � � �  

where  

% �

2

2
YG h
E

 %
�   and  

P
0

Rk
R

�  
0

The left hand side of this equation does not give G because the area B is the energy dissipated 
plastically or is st red as residual stress. The energy release rate from bending is given by area A 
and is, 

o

2% � �
1

3b
0

G G
k� �� �� �

� �  

This may be written as 


 �1 1 sin cosc tF FG G b b& � �
%

� � � �  (4.4) 

and  

2
t t

0 0b
F FG G Gb b� &

%
� � � � �  (4.5) 

where  

2

1
1 1 2 11 1 1

4 30
0 0 0� �� �� �

kk k k
� �� � � �� �
� �� � � �� �� � � �� �� �� �

� � � � �  (4.6) 

and 

&
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2 1 3 0k& � �  (4.7) 2

Note that k0 =1 is the limit of the elastic case and &= 0 with 2
1
3

& � , i.e. 
3b
GG
%

� . For k0 � �, 

&1 � � and 2 0& � , ie bG G' .  
%

It should be noted that the first part of  &1, i.e. 
2

110k
� �
� �� �� is the plastic energy dissipation and the 

second, i.e. 

0k� �
3

1 1 11 1
� � �
� � �� � is that stored elasticity in the curled ch4 30 0k k

�
�� � � �� � � �

ip. For ko >> 1 the former is 

much the larger part. tF
b

 ma now be determined from equation 2.5,  y 

cos sin
t c aF FZb b�  G

� 	 �� �

and also 20 0
0

h e kR Y
�� �� �  

The form of the solution may be seen more easily when the friction conditions are ignored, i.e. 
0aG	 � �  and hence  and if we assume that G = Gc then, tanZ �� �

1

3

2 1 3c oG k& & &

where 3 2 tanYe

1

1

c

c c

o

F G
bG G

k

&

&

%

%

� �

�
�

 (4.8) 
G �

& � �� . 

 then  and  0G
%
� c

c
F Gb �Since k0 " 1 for plasticity to occur then &2 < 1. For 3 1& " , the elastic 

case. This limit is reached when:  

1
2 e�tan

Y��  

2 Ye�  nerall  and is ge y small would be very close to �  
2
�  for this condition to occur. For most 

3 is small and the limiting case is zero when there is no root rotation.  G is then limited to cases &
when 

G
%

 
2 1& �  and 1& '� .  
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Figure 6: Plastic bending case for 	 = Ga = 0 for 3 2 tanYe& � ��  

 

Figure 6 shows c

c

F
bG  versus 

c

G
G

%

 for 3 0& �   and there are no solutions for c

c

F
bG

 when 1
c

G
G

%

$ ; i.e. 

it is not possible to achieve cutting in this mode. The line for 3 0.1& � 
 70� ( � �  is also shown and 

now there are values in the range 0 2
c

G
G

%

$ $ .7.  For 2.7
c

G
G

%

�  elastic cutting occurs. There is a 

maximum in the force at 1.2,
c

G
G

%

(  i.e. 2
c

y

EGh h
 

%
� �  with a value of 

3

1 11 1 2.2&
� �
� �
� �� �

� � � (
2

c

c

F
bG . At 

small values of 
c

G
G

%

, i.e. low values of h , the curve becomes linear with a slope of 1
3& �  and we have  

4 tan
c Y

c h
F Gh

 
� �� �  (4.9) 

This form of curve is quite commonly observed in fracture involving plasticity in which the 

plastic energy maximises at some fraction of the plastic zone size; i.e. 2
1

2p
c

Y
r EG

�  
� , and gives 

elastic behaviour at each end; i.e. h=0 and 2
6 c

Y

EGh
 

( . 

The crack tip touching condition is more closely modelled by equation (3.5) in this case, sin  ce
1
R

 decreases to 1
R

 and not zero as in the elastic case. A similar analysis to the elastic one using 

1 sin��
cos0� �

�  for which  
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3

1 sin
1 sin0k �

& �
�

�  (4.10) 

which remains constant for all loads in the touching condition. For the case of  G=Gc  we have, 


1 1
cos

1 sin
c

c a G
F G G
b

	 � �2& & &
�

% � �
�
� �

� � � � �
� �  (4.11) 

where 1&  and 2&  are evaluated at 0k . This is the equivalent relationship to equation (3.9) and is 
linear in h. An example of the solution is shown in Figure 6 in which 2 0.0Ye 5� �  is used so that, 
with 3 0.1& � , tan)� = 2, i.e. � = 63o for which 4.70k � . The straight line is for equation (4.11) for 

0aG	 � �  and the intersection of the lines is at the onset of touching. Thus the initial linear 
behaviour is at a reduced slope and then moves to the non-touching curve for higher thicknesses.  
For high 0k  values the linear relationship approximates to, 


 � 1 sin
4 cos

c Y
c a

F G G hb
 � 	� �

�
�
� �

�� � � � �
�  (4.12) 

which may be compared to equation (4.9). 
The limitations of this solution are apparent for low values for which  = 0 gives � � 3 0& �  and 

the line is shown in Figure 6 with no solution for G . The touching solution gives  cG
%
$

1
20

Y
k e��  

and hence a 0k value of 20 for the example used here. This gives strains much larger than 0.15 and a 
very steep line in Figure 6. For all cases when  is less than 70o bending requires such high strains 
and therefore the process would not occur. However an alternative plastic deformation mode is 
available which will now be considered. 

�

Plastic Shearing 
 

 
Figure 7: Plastic shearing. 
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The additional plastic deformation mode is shown in Figure 7 in which the shear stress on a 

plane inclined at an angle * reaches the shearing yield stress 2
Y  using the Tresca yield criterion. 

Equilibrium of forces gives, 

cos sin2 sin
c tY F Fh

b b
 * ** � �  (5.1) 

This form of deformation has been widely studied in the metals machining literature and in 
particular by Merchant [15] who proposed that *  was determined by minimising the force Fc. The 
shear deformation can be seen in the cutting of many materials. By use of equation (2.5) we can 
eliminate Ft/b:  


 �
1 1 tan

2 tan 2 cos sin1 tan
c Y Yh hF

b Z
  aG ** � 	 �*
� ��
� ��� � �� �

� � �
��

�
��� �

0�

 (5.2) 

Differentiating with respect to tan * gives a minimum condition for * defined by 

21 tan 2 tan 10 0H Z* *� �� �� �
� � �  (5.3) 

i.e.  

21tan 10
Z H Z

H* � � ��
�

 

 and  

2cot 10 Z H Z* � � � �  

where  


 �
2

cos sin
a

Y

G
h

H
 � 	�

�
�

 

On substituting in equation (5.2) we have the minimum in cF
b , i.e. 

cot 0
c

Y
F hb  � *  (5.4) 

It should be noted that for 0aG	 � � , 

2
4 2

1 sincot tan 1 tan . .
cos 00 i e � ��* � � *� � ��� � � � �  (5.5) 

an expression familiar from previous sections. 
The extreme form of shear deformation is shown in Figure 8 in which the chip rotates through an 

angle 
2
� �� ��� �

�
�  and the tool fits into the gap as shown. 

Continuity requires that for plane strain the chip thickness changes and we have 
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 �cos
sin

0
c

0
h h

* �
*
�

�  (5.6) 

and a shear strain is induced of, 


 �
cos

sin coss
0 0

e �
* * �

�
�

 (5.7) 

It should be noted that for no thickness change, hc = h, 0
1 sincot

cos
�*
�

�� , i.e. the zero friction 

condition.  

 
Figure 8: Plastic shearing with no bending. 

 

This is a crack tip touching case and hence the fracture solution may be obtained by simply 
adding Gc to equation (5.4), i.e., 

cotc
c Y 0

F G hb  � � *  (5.8) 

For the zero friction case equation (5.5) cn be used to give: 

1 sin
cos

c
c Y

F Gb
�  �

� �
� �
� �

�� � h  (5.9) 

On comparing with equation (4.12) for the bending situation with crack tip touching, it can be seen 
that the latter gives an identical form but with a lower slope. Thus the bending mode, if possible, 
would be preferred but for low � it is not and shearing occurs. For the general case,  


 �
2 21

cos sinY

c
c Y

F G h Z Zb h
 

 � 	 �

� �
�
�� �� �

� � � � �
�
aG �

�  (5.10) 

which is non-linear in h and extrapolates to Gc at h = 0 and has the from,  
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2
cos sin

c Y
c

F hG
b

 
� 	 �

� �
�

aG for small h.   

For large h there is a linear form, 


 �

 �2

1 sin
cos1

c a
c Y

F GGb
� �

 
� �	

� �
�
�
� �

� �
( � �

��
h�

�
 (5.11) 

where tan� 	� . 

If touching is not assumed then the expression for cF
b , equation (5.2), becomes 


 �
1 1 tan tan

2 tan 2 cos sin1 tan
c aY Y

c
h hF G Gb Z

  � ** � 	 �*
� �� �
� ���� �� �� �

� � � �
�� cG�� �  (5.12) 

The condition for minimum cF
b  is now, 


 � 22 tan
1 tan 2 tan 1 0c

0 0
Y

Z G
H Zh

�
* * 

� �
� �
� �
� �

�
� � � � �  

and is given by, 

cotc
cY 0

F h Gb  *� �  

as before with, 

2 2 coscot 1
cos sin

c
a

0
Y

GG
Z Zh

	
�*  � 	 �

� �
� �
�
�
� �� �

�
� � � �

�
�
�

 (5.13) 

This is the same solution, though in a different form, as that given by Atkins [10] with Ga=0. 

The solution gives c
c

F Gb �  for h=0 and has a h  form at low h as in equation (5.10). For large 

h we again have a linear relationship  


 �

 �2 2

1 sin11
cos cos1 1

a
c Y

F Gc G
b

� �	  
� � �	 	

� � � �
� � �
� � � �� �� �

� �
� � � �

�� �
h�  (5.14) 

i.e. an identical slope but a slightly higher intercept than equation (5.11). The general form of these 
results is shown in Figure 9.  
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Figure 9: Fracture force per unit width as a function of thickness for shear yielding. 

 

This analysis does not include bending but generally some will occur prior to the formation of the 
slip band. Thus the chip will undergo a rotation of �0 at the crack tip given by, 

�sin 20 e� ��  

where  is the maximum bending strain. The shear band angle will be reduced by �0 but the 
optimisation of 

�e

 0 �* ��  is the same as for * and equation (5.8) now becomes, 


 � sincot
4

c 0
c Y 0 0

F G hb
� * � �

� �
� �� �� �

� � � �  

and the total plastic work increases. 
The value of 0*  at , h'� 0*  may be derived from equation (5.3) and is, 

2tan 10 Z Z* � � �  

and since 
tanZ �� �� �  then: 


 �

 �


 �1 sin
tan tan

4 2cos0
� � ��*
� �

� �
� �
� �
� �

� � �
� � �

�
�

 

i.e.  

4 2 20
�� �* � �

� �
� �

� � �  
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and on including  we have: 0�

4 2 20 0
�� �* �� �

� �
� �

� � � �  

If we limit e  to 0.15, i.e.  and for *0 values of about 45o, i.e. low friction cases, the energy 
dissipated increases by a factor of about 1.6. This, perhaps surprising, result arises from the 
necessity of satisfying the kinematics in forming the shear plane, i.e. some bending must precede its 
formation. 

%
110� � �

Work hardening 
The plasticity solution given so far has assumed a perfectly plastic material, but in some cases the 
occurrence of work hardening can have significant effects. Now we shall assume that: 

Ye e! , Ee �  

and  

Ye e" , 
n

Y
Y

e
e  
� �
� �� �� �

�  

in simple tension. The bending case may be analysed for this condition and equations (4.4) and 
(4.5) are the same but the expression for 1&  and 2&  in equations (4.6) and (4.7) become,  


 �
 � 2

21

1
2 2 1 1 1 3 2 2 1 1

3 2 1 4 2 3 22 1

n
n0

0
0 0

k n n nkn k n n n kn n
&

� � �� � � � � �
� �� � � � � �
� �� � � � � �� �

� � �� � � � �
� � � �� �

 (6.1) 


 �
 �
1

2
1 3 1 1 2
1 4 2 2 1

n
0

0

n n n kn n k n n
& �� � � �

� � � �

� �� � �
� � � �

� � � �  (6.2) 

The non-work hardening forms are retrieved for n=0 and at  and 11, 00k &� � 2
1
3

& � , for all n. 

The effect of working hardening is illustrated in Figure 6 where the solutions for zero friction are 
given for equation (4.8). For n=0.1 and  it can be seen that the effect is small and does not 
alter the form of the solution. This is perhaps to be expected since the strains are not large in 
bending. 

3 0.1& �

This is not so in shear yielding and here it can describe the work hardening in shear by using, 

3
2 2

n

sY
s

Y

e
e

  
� �

� � �
� �

 (6.3) 

where  


 �
tan cotcos

cos sin 1 tan tan
0 0

s
0 0

e
0

* *�
* � * � *

�
� �

� �  
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Note that for 
40
�* (  and , es = 2 so that 0� �

3
2

s

Y

e
e

� �
�
� �

�  would be a large number. 

The equation for cF
b

, equation (5.2), now becomes, 

31 1 tan
1 tan 2 2 tan cos sin

n

c s aY

Y

F e Gh
b Z e

* * tan
* * � 	

� �� � � ��� � �� � � �� � �� �� �� ��
�

�
 (6.4) 

This may be minimised as before and for small n the solution for o*  is changed very little and all 

the results so far given apply with  increased by the factorY 
3
2

n

s

Y

e
e

� �
��

� �
, i.e. an enhanced yield stress. 

Experimental comparisons 
A separate paper [16] will be published describing experimental work specifically designed to 
explore the analysis given here. There is, however, an extensive body of results in the literature and 
in particular [17] on machining polymers and [8] on metals. Both tabulate the values of Fc, Ft and 

0*  for a range of h and  values so that it is possible to perform direct comparisons with the 
analysis. 

�

A set of data from Kobayashi [17] is given, for six polymers, in Table 2. The first analysis 
performed concerned the assumptions about friction on the tool face which are embodied in 
equation (2.5).  For the crack tip touching condition the extra term,  
-ZGc, is included and the analysis as shown in equation (7.1): 

cos sin
t c a

c
F F GZ ZGb b � 	 �� � ��  (7.1) 

This assumes a linear dependence of tF
b

 on cF
b

 with a positive intercept. The six sets of data are 

shown in Figure 10 and good linearity is apparent and the values of Z, 	  and the 

intercept: 1 cos sin C
aGG

� 	 �
�

�
ZG� , are also given in Table 2. G1 is always positive and illustrates the 

importance of including Ga in the friction model.  Figure 11 shows cF
b

 versus h and the lines are 

fitted using equation (5.10) for the crack tip touching case. The solver function in Microsoft 
Excel™ was used to accommodate the non-linearity and the fit gives two parameters since G1, Z 
and 	  are known from Figure 10 and hence Gc, Ga and  are found. These values are also shown 
in Table 2. The non-touching case, which has c

Y 
ot 0*  given in equation (5.13), has the same form as 

equation (5.10) so that the non-linear fit will give the same value of Gc but Ga is found directly from 
equation (7.1) since the cZG  term is omitted. The Ga value is given as aG  in Table 2 and is slightly 
changed. 
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Figure 10: Polymer data from [17]; Transverse force per unit width as a function of cutting force for 

various polymers. Equation (2.5) is fitted. 
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Figure 11:  Polymer data from [17]; Cutting force per unit width as a function of thickness of cut for 

various polymers. Equation (5.10) is fitted. 

 128



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

Ta
bl

e 
2:

 R
es

ul
ts

 fr
om

 th
e 

an
al

ys
is

 o
f t

he
 m

ac
hi

ni
ng

 d
at

a 
fo

r p
ol

ym
er

s f
ro

m
 [1

7]
. (

N
ot

e 
th

at
 th

e 
va

lu
es

 o
f  

Y i
n 

br
ac

ke
ts

 a
re

 ta
ke

n 
fro

m
 [1

7]
). 

  
 

	
 

G
c  

(k
Jm

-2
)

  Y
 

(M
P a

)  
G

a  
(k

Jm
-2

)
M

at
er

ia
l 

h 
(m

m
) 

 

(N
m

m
-1

) 

 

(N
m

m
-1

) 
*+ +

 
Z 

G
1  

(k
Jm

-2
) 

*+ +
 

 
(k

Jm
-2

)

PE
 0

�
�

+
 

0.
02

5 
3.

78
 

1.
70

 

40
.6

20
.5

 

0.
15

 
1.

05
 

0.
15

 
1.

46
 

59
 

(2
0)

 
1.

27
 

1.
05

 
0.

05
 

6.
17

 
1.

89
 

28
.0

 
0.

10
 

9.
64

 
2.

46
 

33
.0

 
0.

20
 

16
.6

3 
3.

31
 

35
.1

 
0.

30
 

23
.0

6 
4.

54
 

33
.8

 

A
B

S 10
�

�
+  

0.
01

3 
2.

87
 

1.
27

 

44
.0

39
.2

 

0.
03

5 
1.

17
 

0.
21

 
0.

62
 

12
6 

(3
0)

 
1.

22
 

1.
15

 
0.

02
6 

5.
32

 
1.

35
 

39
.2

 
0.

05
2 

8.
96

 
1.

52
 

41
.3

 
0.

10
5 

15
.3

8 
1.

69
 

43
.4

 

PA
 10

�
�

+  

0.
05

 
8.

82
 

1.
96

 

43
.4

46
.8

 

0.
05

6 
1.

43
 

0.
23

 
1.

58
 

10
8 

(5
5)

 
1.

55
 

1.
40

 
0.

10
 

14
.2

1 
2.

21
 

46
.1

 
0.

15
 

20
.0

9 
2.

45
 

46
.1

 
0.

20
 

25
.9

7 
2.

94
 

46
.0

 

PC
 20

�
�

+
 

0.
02

0 
4.

56
 

0.
82

 

52
.3

40
.3

 

-0
.2

6 
2.

42
 

0.
09

6
1.

68
 

12
5 

(5
0)

 
1.

93
 

2.
49

 
0.

04
1 

7.
34

 
0.

82
 

44
.7

 
0.

08
2 

12
.2

3 
-0

.8
2 

46
.6

 
0.

12
3 

16
.3

0 
-1

.3
1 

47
.5

 
0.

24
7 

27
.2

2 
-4

.8
9 

48
.5

 

A
C

 10
�

�
+  

0.
02

0 
4.

25
 

0.
49

 
47

.5
 

 

36
.6

 

-0
.0

88
0.

92
 

0.
08

8
1.

82
 

11
5 

(7
0)

 
0.

76
 

0.
92

 
0.

04
1 

7.
19

 
0.

33
 

39
.0

 
0.

08
2 

11
.4

5 
0 

41
.2

 
0.

12
3 

15
.3

7 
-0

.4
9 

41
.8

 

PP
 20

�
�

+
 

0.
11

 
2.

18
 

0.
30

 

51
.7

40
.2

 

-0
.2

4 
0.

85
 

0.
12

 
0.

69
 

11
4 

(3
0)

 
0.

67
 

0.
87

 
0.

02
2 

3.
17

 
0 

46
.7

 
0.

04
5 

5.
54

 
-0

.4
0 

49
.9

 
0.

09
2 

9.
80

 
-1

.3
9 

52
.4

 
0.

18
2 

17
.3

3 
-3

.3
7 

49
.0

 
N

ot
e:

  
PE

 –
 P

ol
ye

th
yl

en
e 

 
A

B
S 

– 
A

cr
yl

o-
B

ut
ad

ie
ne

-S
ty

re
ne

 
PA

 –
 P

ol
ya

m
id

e 
PC

 –
 P

ol
yc

ar
bo

na
te

 
A

C
 –

 P
ol

ya
ce

ta
l 

PP
 –

 P
ol

yp
ro

py
le

ne
 

129



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

The values derived for  cannot be checked but are reasonable for the polymers. i.e. ABS and 
PP give rather low values while PE, PC, PA and AC are all similar [18]. There is nothing to 
compare with  other than  and they have similar values which may be because the chips are 
adhered to the tool and are then sheared to failure. The  Y values are all rather high although, again, 
there is no way of knowing the true values. Some values are given in [17] and are shown in brackets 
in Table 2. The ratios range from 1.6 (AC) to 4.2 (ABS) and perhaps suggest that work hardening is 

present. This ratio is 

cG

GaG c

3
2

n
� �

��� �
s

Y

e
e��  as given in equation (6.6).  

Some further insight is provided by the 0*  values which are derived from measuring hc  and 
using equation (5.6), ie 

costan
sin

0
ch

h

�*
�

�
�

 

In all cases, other than PA, 0*  in Table 2 can be seen to increase with h as is expected from 
equation (5.3), for which the solution for small h is, 

2
1

2

tantan tan tan
1

a 0
0 0 0

Y

G hhb
** * *
	

�� � � �
� h

 (7.2) 

where 
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Figure 12: Shear plane angle as a function of inverse cut thickness for various polymers.  

Data is from [17]. Equation (7.2) is fitted. 

 

Figure 12 shows tan 0*  as a function of h-1 and most of the data give a reasonably linear fit. The 

experimental values of 0*  and h  are compared to those derived from equations (7.2) in Table 3.  
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The *  values agree quite well and are generally lower in the experiments. This is consistent with 
the notion of �0 affecting 0*  and Table 3 gives values of �0 of about 4o in some cases. The h  values 
are generally much lower than those predicted.  
 

Table 3: Machining Data for Polymers from [17]. 

V (ms-1) Material 
Predicted Experimental 

�  *  
 �h m	  *  
 �h m	  

0.4 PE 40.6 16 36.9 10   4 
2.5 ABS 44.0 9 44.1 4 ~0 
1.7 PA 43.4 12 46.1 -1  -3 
3.3 PC 52.3 26 48.5 6   4 
6.7 AC 47.5 8 42.3 4   5 
6.7 PP 51.7 10 52.2 5 ~0 

 

There are some uncertainties about determining 0*  from hc in polymers since the machining 
speeds are high (typically 2-7 ms-1) and lead to considerable heating in the chips.  Simple thermal 
calculations would suggest temperature rises of up to 70oC in most cases which could cause hc to 
recover considerably. This probably explains the rather large variation in the measurements. 
However, if �,)- 5o is assumed then the  Y and h  values are reduced by about 20%. 

It should also be noted that the chip thickness changes used to determine 0*  experimentally 
confirm that shear yielding is occurring since bending deformation alone would give no change 
from cut thickness to chip thickness. The bending solution equations (3.9) and (4.11) both give a 

linear dependence of cF
b

 vs h, but the measured slopes give unrealistic values of E and  Y. 
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Figure 13: Transverse force as a function cutting force per unit width for steel [8].  

Equation (2.5) is fitted. 
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Figure 14: Cutting force per unit width as a function of thickness of cut for steel at various rake 

angles [8].   Equation (5.10) is fitted. 
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Figure 15: Transverse force as a function cutting force per unit width for �-brass at various rake 

angles [8].  Equation (2.5) is fitted. 

 

 

132



17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

0

50

100

150

200

250

300

350

0 0.05 0.1 0.15 0.2 0.25 0.3
h  (mm)

F c
 / 

b
 (N

/m
m

)

20
25
30
35
40

Rake angle (o)

 
Figure 16: Cutting force per unit width as a function of thickness of cut for �-brass at various rake 

angles [8].  Equation (5.10) is fitted. 

 

Some data taken from [8] for a steel [SAE1112] and an -brass containing 15% Zn are shown in 

Figures 13-16. The 

�
tF

b
 vs cF

b
 results are for different  values and show good linearity with clear 

positive intercepts. The values of 

�

	 , , ,  and Y aG cG h  are given in Table 4. It would be expected 
that Gc would be independent of  and, while this is true for higher � values, the value is 
significantly above the average at the lowest � value. Indeed all the parameters are sensibly 
independent of � for most of the range as expected from the analysis. The Gc and Ga values, which 
have standard deviations of about .1 kJm-2, are very similar for the two metals. The 

�

	  values are 
much higher than for polymers and the yield stresses are factors of 2-3 higher than first yield values, 
as with polymers. 
The 0*  values were meticulously measured in [8] using three different dimensional changes, i.e. the 

thickness as in [17], but also using the chip width and the axial length. 0*  does changes with h but 

only slowly and the measured h  values are given in Table 5 together with the predicted values. 

As for polymers, the measured h  values are significantly less than predicted, i.e. an average 
measured value of 2-3 m	  compared to predicted values of 8-11 m	 . The measured 0*  values are 
given in Table 5 together with the predictions and here the experimental values are again lower than 
the predicted values. The �0 values are also given and are reasonably constant at 19o for steel and 
16.5o for brass, i.e. implying strains of about 24%. If the 0*  values for both metals are decreased by 
18o, the  and Y h  values decrease by about a factor of two. Thus the yield stresses are about 
500MPa for steel and 320 MPa for brass which are much closer to the accepted values, though, they 
do probably still reflect considerable work hardening. The h  values predicted are also closer to the 
experimentally measured values.  
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Table 4: Results obtained for the metals cutting data, from [8]. 
 

Steel 

�)(o) 	)  Y 
(MPa) 

Ga 
(kJm-2) 

Gc 
(kJm-2) 

 
(	m) 

(experimental) 
h (	m) 

5 0.44 1020 24.8 64.4 11 5 
10 0.41 1250 17.5 26.2 8 1 
15 0.47 1140 11.2 5.0 6 3 
20 0.52 1000 7.8 14.0 5 3 
25 0.56 970 6.5 14.0 5 2 
30 0.56 960 8.8 14.0 8 1 
35 0.60 940 4.6 21.2 5 3 
40 0.49 950 8.2 16.5 13 3 

Average 0.51 1030 11.2 22.0 8 3 
 

� - brass 

� (o) 	)  Y 
(MPa) 

Ga 
(kJm-2) 

Gc 
(kJm-2) 

 
(	m) 

(experimental) 
h (	m) 

20 0.69 680 13.6 41.0 10 3 
25 0.68 800 11.0 16.9 18 1 
30 0.62 750 13.2 18.1 14 3 
35 0.59 770 9.8 15.5 12 2 
40 0.65 750 5.2 15.4 9 2 

Average 0.65 750 10.6 21.4 11 2 
 
 
 
Table 5: Shear plane angles for �-brass and steel [8]. 
 

�)
� - brass Steel 

o

o
*  

o

o
*  

(experimental)

o� o
 

o

o
*  

o

o
*  

(experimental) 

o� o
 

5 - - - 35.7 15.7 20.0 
10 - - - 38.9 16.5 22.4 
15 - - - 39.9 20.6 19.3 
20 37.5 21.7 15.8 41.3 25.4 15.9 
25 40.5 22.7 17.8 42.9 28.5 14.4 
30 44.0 24.8 19.2 45.4 32.3 13.1 
35 47.0 26.8 20.2 47.0 34.5 12.5 
40 50.0 28.0 22.0 52.0 37.8 14.2 

Average   19   16.5 
 
 

Conclusions 
The analysis presented here makes three additions to the established machining and cutting 
literature as well as incorporating fracture toughness as advocated by Atkins [10].  The analysis has 
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been applied to published machining data, i.e. to polymer machining data published by Kobayashi 
[17] and metals machining data published by Eggleston et al [8].   

The first analytical development was to incorporate into the friction model a term Ga which may 
be interpreted as an initiation or adhesion shear condition at the interface. The experimental data 
analysed for both polymers and metals clearly shows that this term is essential and results in values 
of the coefficient of friction between the tool and the chip, 	 ,  being independent of thickness. The 
Ga values are of a similar magnitude to Gc in the data examined and both Ga and Gc are mostly 
independent of rake angle. However, at low values of rake angle there is some evidence of higher 
values of Gc and Ga which may be a consequence of mixed mode effects [19]. The reliability of the 
Gc values makes a cutting or machining procedure a possible route for measuring toughness in 
highly ductile materials and this notion will be explored elsewhere [16]. 

The second development was the incorporation of root rotation during bending into the analysis. 
For elastic and elastic–plastic chip bending this leads to solutions for Gc which describe cutting 
under such conditions. However, this analysis shows that the bending mechanisms are, in general, 
inefficient and apply only under limited circumstances, i.e. at high rake angles.    

The third development arises here since to generate sufficient energy release rate one must 
postulate that the tool tip touches the crack tip and energy is put directly into the fracture. Such a 
model removes the requirement for a crack to exist ahead of the tool, a limitation that bedevilled 
early attempts to use a fracture based analysis to describe cutting. These bending solutions are only 
feasible for large rake angles (>60o) and for smaller values the well established shear plane 
deformation must be invoked. This is done here using Merchant’s force minimisation method but 
incorporating root rotation.  

The experimental data for both polymers and metals fit the general form of the analysis quite 
well but the yield stress values are generally much higher than first yield and suggest considerable 
work hardening during the shearing. They are generally independent of rake angle. The shear plane 
angles have been closely studied in the past and much has been made of the fact that the predictions 
are generally higher than the measurements. In the data used here this was again found to be true 
although the increase of angle with thickness is predicted via Ga. The discrepancy in angle does 
correlate reasonably well with the idea that it corresponds to root rotation though this conclusion 
requires further evidence. This is particularly so in polymer data where recovery effects may cause 
problems with the angle measurements. There is significant evidence that work hardening results in 
high yield stress values, particularly in the case of polymers. The presence of this rotation also 
provides a description of bending effects in the shear case. The simple Merchant model does not 
include such effects which are observed as chip curling. The observation also suggests that the 
bending strains are limited to about 6% in polymers but up to 20% in metals. It is unclear if this is a 
consequence of limitations in the bending process such as compression buckling or from cracking in 
the chip. 
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