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Abstract. An incremental description of (linear elastic) fracture mechanics is presented which shows
a perfect analogy with plasticity theory. The formulation of a generic criterion stemming from the
associated plasticity theory is presented and its feature discussed. The analogy between plasticity and
quasi-static crack growth leads also to a new algorithm for crack propagation for an arbitrary number
of cracks in multi-connected materials, which is driven by the increment of external actions. Stability
of crack path under mode I loading is finally analyzed.

Introduction
Fracturing process reveals three distinct phases [1]: loading without crack growth, stable crack growth
an unstable crack growth. During crack advancing, energy dissipation takes place in the process-
region, in the plastic region outside the process region, and eventually in the wake of plastic region.
When the fracture process is idealized to infinitesimally small scale yielding, energy dissipation dur-
ing crack growth is concentrated at the crack tip. This assumption together with linear elasticity is
assumed in the present note, making use of Hooke’s law without limitation of stress and strain mag-
nitudes: the stress-strain fields in the crack tip vicinity is uniquely determined by the stress intensity
factors (SIFs).

Similarly to the determination of the “elastic limit”, the concept of incipient crack growth is
difficult to identify: in both cases, the difficulty is solved by a convention. Onset of crack growth
is governed theoretically by a local condition, describing when the process region reaches a critical
state which, in most cases of engineering interest, is independent on body and loading geometry: this
property is termed autonomy [2]. Several criteria, the Maximum Tensile Stress [3], the Maximum
Shear Stress [4], the apparent Crack Extension Force [5], and the Strain Energy Density [6] to cite but
a few, stem from the crack configuration “at the onset of propagation”: they have been extensively
represented in the SIFs plane K1 − K2. Many other criteria are grounded on the stress and strain
fields in the “propagated configuration” as the crack elongation approaches zero from above, among
them the Local Symmetry [7] and the Maximum Energy Release Rate [8, 9] criterion. It is natural
therefore to analyze these criteria into a different plane, that in the rest of the paper will be named the
Amestoy-Leblond plane.

Even if the total amount of stable crack growth does not obey the property of autonomy, being
dependent on the plastic region about the crack tip, stable crack growth is ruled by local conditions
at the process region. The onset of unstable crack growth is, on the contrary, a result of a global in-
stability. Analogously to plasticity [10], the global quasi-static fracture propagation problem consists
in seeking an expression of the crack propagation rate for all three phases of the fracturing process.
The question can be posed in the following way: given the state of stress and the history of crack
propagation (if any), express the crack propagation rate (if any) as a function of the stress and of
the history. Indeed this path of reasoning seems quite natural: though, most of algorithm for crack
propagation are designed in the opposite way: they express the external load history as a function of
the crack propagation rate [11, 12]. Whereas this approach is quite easy, it is not optimal in evaluating
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the critical point of the equilibrium path and further it seems to be unsuitable in the presence of many
propagating cracks in multi-connected bodies.

For linear elastic fracture mechanics, the crack propagation problem is studied in section exploit-
ing its analogy with plasticity theory. A maximum principle is stated, that expresses the maximum
dissipation at the crack tip during propagation; from it, associated flow rule and a propagation cri-
teria for angle determination descend. As an important implication, crack propagation angles from
any aforementioned criteria can be eventually recovered keeping the convexity of the safe equilibrium
domain, the constraint K∗

1 ≤ KC
1 , the correct energy dissipation at the crack tip. Consistency condi-

tions lead to the formulation of an algorithm for crack advancing in section , which is driven by the
increment of external actions (under the simplifying assumption of proportional loading) and allows
the evaluation of crack length increment and curvature at the crack tips of several cracks contem-
porarily advancing. Stability of crack path under mode I loading, as it has been analyzed in [13], is
recovered for slightly curved or kinked cracks and extended to any crack propagation angle.

Small strains and displacements hypothesis is assumed on a domain Ω =
⋃N

n=1Ωn ⊂ R2, together
with isotropic linear elastic constitutive law in all the N homogeneous closed domains Ω̄n. Interfaces
between domains are assumed to be rigid, i.e. relative displacements along each interface are not
allowed. Loci Υi, i = 1, 2, ..., of possible displacement discontinuities wi(x) are defined as usual
- see [14] for details - inside of each domain Ω: the issues of interface cracks and of intersection
between moving cracks and interfaces fall beyond the scopes of the present note.

Figure 1: Notation. C denotes the curvature of the main branch at the crack tip, whereas a∗

and C∗ define the curvature of the elongated branch.

The structural response to the following quasi-static external actions is sought: tractions p̄(x) on
Γp ⊂ ∂Ω, displacements ū(x) on Γu ⊂ ∂Ω. They are all assumed to be proportional, i.e. that
they vary only through multiplication by a time-dependent scalar k(t), termed load factor, taken to be
zero at initial time t0 = 0 when the cracks attained their initial length. In the present note, “time” t
represents any variable which monotonically increases in the physical time and merely orders events;
the mechanical phenomena to study are time-independent. Domain forces are assumed to be zero.

The notation of [15], see also figure 1, will be used. In their celebrated paper [15], Amestoy and
Leblond established the general form of the expansion of the stress intensity factors (SIFs) in powers
of the crack extension length s, for a crack propagating in a two-dimensional body along an arbitrary
kinked (by an angle θ = mπ) and curved path and evaluated the detailed form the functions of the
geometric and mechanical parameters which appear in the expansion. Denoting with K = {K1, K2}
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the SIFs vector, the expansion of K at the extended crack tip in powers of s is of the general form:

K(s) = K∗ +K(1/2)
√

s+K(1) s+O(s3/2) (1)

where K∗, K(1/2), K(1) are given componentwise (using the Einstein summation convention) by

K∗
p = Fpq(m)Kq (2)

K(1/2)
p = Gp(m)T + a∗Hpq(m)Kq (3)

K(1)
p = Zp + Ipq(m) bq + C Jpq(m)Kq + a∗Qp(m)T + a∗2Lpq(m)Kq + C∗Mpq(m)Kq (4)

In these equations, T , and the bqs are the non singular stress and coefficients of the
√

r terms in the
stress expansion at the original crack tip 0. The Fpqs, Gps, Hpqs, Ipqs, Jpqs, Qps, Lpqs, and Mpqs
are functions of the kink angle θ, which are termed universal because they obey to the autonomy
concept1; finally, Zp depends on the geometry of Ω.

A plasticity framework for LEFM
The definition of a “safe equilibrium domain” and of the “onset of crack propagation” as its closure
remaind to the plasticity theory [10, 16]: they appear as the counterpart of the elastic domain and of
the yield surface. Provided that merely the crack tip is considered as a material point, one is tempted
to state that a crack tip is not going to propagate if the SIFs vector K∗ belongs to the set:

E =
{{K∗

1 , K
∗
2} ∈ R+

0 ×R | ϕ(K∗
1 , K

∗
2) < 0

}
(5)

which is termed the “safe equilibrium domain”. When K∗ ∈ E the material2 surrounding the crack
tip is experiencing a purely linear elastic behavior, eventually corresponding to an elastic unloading.
The boundary of E, ∂E, is named the “onset of crack propagation surface”:

∂E =
{{K∗

1 , K
∗
2} ∈ R+

0 ×R | ϕ(K∗
1 , K

∗
2) = 0

}
(6)

and vectors K∗ /∈ E are ruled out. The definitions above implicity label the SIFs vector as an internal
force for the LEFM problem, conjugated to a not yet specified internal variable.

Figure 2: Definition of vector ȧ. It is defined in the coordinate system {y1, y2} assuming that
angle θ∗ is positive when counterclockwise, as usual. As a consequence, it always assumes the
same absolute value and the opposite sign of θ.

1see [2] but also the excellent description in [1]
2in the linear elastic modelization, whose effectiveness is restricted to the small-scale yielding approach
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At all material points experiencing plastic deformations, mechanical dissipationD > 0 is induced;
local dissipation inequality defines in plasticity (and more generally for standard dissipative systems)
generalized strain rate as the conjugate to the generalized stress, as their product gives the rate of
dissipation [10, 17]. In LEFM, mechanical dissipation is due to crack extension, for its irreversible
nature [18]: it seems natural assuming as internal variable a quantity related to the quasi static crack
tip velocity vector ṡ, defined as the vector oriented with axis y1 in figure 1 and with modulus equal to
the quasi static velocity ds

dt

∣∣
s→0+ as the crack elongation s approaches zero from above. The internal

variable is here termed “dissipation rate” vector ȧ and is defined as in figure 2: it is related to ṡ by
the orientation defined through the kinking angle θ∗ = 1

2
θ and by its length, that will be proved to be

equal to ds
dt

∣∣
s→0+ too.

A maximum principle - termed D-principle - for LEFM is postulated as follows:

For given dissipation rate vector ȧ among all possible SIFs on E, the function

D(k∗; ȧ) = k∗ ·
[
1 0
0 −1

]
ȧ (7)

attains its maximum for the actual SIF vector K∗:

D(K∗; ȧ) = max
k∗∈E

D(k∗; ȧ) (8)

D-principle - analogously to maximum dissipation in plasticity [16] - implies: i) associative flow
rule in the Amestoy-Leblond plane (normality law):

ȧ =

[
1 0
0 −1

]
∂ϕ

∂K∗ λ̇ (9)

ii) loading/unloading conditions in Kuhn-Tucker complementarity form:

λ̇ ≥ 0, ϕ ≤ 0, λ̇ ϕ = 0 (10)

iii) convexity of safe equilibrium domain E. The last of conditions (10) expresses the fact that λ̇ and ϕ
are not simultaneously nonzero: crack extension (i.e. λ̇ > 0) is possible when ϕ = 0, while negative
ϕ implies that λ̇ must be zero, in which case the behavior is linear elastic. Consistency condition can
be deducted from (10) as usual (see e.g. [10]); they read:

When ϕ = 0, λ̇ ≥ 0, ϕ̇ ≤ 0, λ̇ ϕ̇ = 0 (11)

Vectors ȧ and ṡ materialize the kinking angle θ∗ = 1
2
θ, that can be obtained from the normality law

as:

− ∂ϕ

∂K1
∗ tan θ∗ =

∂ϕ

∂K2
∗ (12)

The minus sign in the normality law (as well as the matrix

[
1 0
0 −1

]
in the D function) are required

because when K2 > 0 the kinking angle θ < 0, as already noticed in the previous section.

Consider as crack propagation criterion the Maximum Energy Release Rate in the form3:

ϕ(K∗) =
1

2

1− ν2

E

(
||K∗||2 −KC

1

2
)

(13)

3The quadratic form (13) is not degree-one homogeneous. It can be shown that outcome (15) can be obtained
by using a degree-one homogeneous form as well.
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It holds:

ȧ =

[
1 0
0 −1

]
∂ϕ

∂K∗ λ̇ =
1− ν2

E

[
1 0
0 −1

]
K∗λ̇ (14)

and

D(K∗; ȧ) = K∗ ·
[
1 0
0 −1

]
ȧ =

1− ν2

E
||K∗||2λ̇ ≥ 0 (15)

It can be therefore concluded that: i. function D equals the energy dissipation at the crack tip due to
an infinitesimal crack propagation λ̇ = ṡ; consequently,D-principle is the counterpart of the postulate
of maximum plastic work; ii. λ̇ = ṡ is the actual “quasi-static crack propagation velocity” and λ = s
will coincide with the total crack propagation, provided that λ = s = 0 at the beginning of the crack
propagation history.

An algorithm for crack propagation
Consider a monotonic sequence of instants t0 = 0, t1, ..., tn, tn+1 = tn + Δt. Assume all variables
be known at tn: the increments of the unknown are sought for the given variation over Δt of the
external actions, governed by the variation Δk = k(tn+1)− k(tn) of the load factor. With the aim of
readability, the index n will be omitted in this section when unnecessary, with the only exception of
instant tn.

Assume that J ≥ 1 crack tips are on the onset of propagation at tn , that is for j = 1, 2, ..., J the
load factor k(tn) is such that {Kj

1 , K
j
2} ∈ ∂E

j . Because all angles of propagation merely depends

upon the ratio αj =
Kj

2

Kj
1

, they are assumed to be known at time tn and termed θj . Consistency

conditions (10) can be invoked for the j−th crack elongation:

ϕ̇j =
2∑

i=1

∂ϕj

∂K∗
i

(
∂K∗

i

∂k
k̇(tn) +

J∑
h=1

∂K∗
i

∂ah
ȧh(tn)

)∣∣∣∣∣
ϕj=0

= 0 j = 1, 2..., J (16)

The linear system of equations (16) relates the J crack elongation “velocities” ȧh to the variation of
the load factor k̇ at time tn, which drives the loading process and can be assumed to be given. In
order to achieve a more effective algorithm, an arc-length procedure [19] can be set up instead of
assuming a given load factor variation, with the arc-length eventually adapted by the curvature of the
equilibrium path. In both cases, the constraint ȧh > 0 for all h = 1, 2..., J avoids troubles in the
choice of the sign of variation k̇.

In equation (16): K∗
i is always referred to the j-th crack, beacause any crack propagation criteria

at a crack tip is merely dependent on SIFs at the same crack tip: for the sake of clearness the apex j

is omitted for K∗
i ; ∂ϕj

∂K∗
i

depends on the selected criteria;
∂K∗

i

∂k
is trivial because for given crack lengths

the global behavior is purely linear elastic: therefore

∂K∗
i

∂k

∣∣∣∣
ϕj=0

=
K∗

i

k

∣∣∣∣
ϕj=0

factors
∂K∗

i

∂ah depend on the global elastic problem and, besides intrinsic difficulties related to expansion
(1), their evaluation is yet an on going research topic [20]. A way to circumvent such a drawback is
assuming an expansion for ah with respect to k at time tn in the following form:

ah(t)− ah(tn) =
Ω∑

ω=1

Qh
ω(a

1(tn), ..., a
J(tn)) [ k(t)− k(tn) ]

ω t > tn (17)
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in which the maximum number of terms Ω is suitably selected. Assuming for instance Ω = 1 leads
to:

ϕ̇j = k̇(tn)
2∑

i=1

∂ϕj

∂K∗
i

(
K∗

i (tn)

k(tn)
+
∑
h�=j

∂K∗
i

∂ah

∂ah

∂k

∣∣∣∣
ϕj=0

+
∂K∗

i

∂aj

∂aj

∂k

∣∣∣∣
ϕj=0

)

= k̇(tn)
2∑

i=1

∂ϕj

∂K∗
i

⎛
⎝K∗

i (tn)

k(tn)
+

[∑
h�=j

∂K∗
i

∂ah
Qh

1 +
∂K∗

i

∂aj
Qj

1

]
ϕj=0

⎞
⎠

= 0 j = 1, 2..., J

Taking into account of expansions (1) and (17), one gets:

ϕ̇j = k̇(tn)
2∑

i=1

∂ϕj

∂K∗
i

[
K∗

i (tn)

k(tn)
+
∑
h�=j

∂K∗
i

∂ah
Qh

1 +

(
K

(1/2)
i

2
√

aj(t)− aj(tn)
+K

(1)
i

)
Qj

1

]
ϕj=0

= k̇(tn)
2∑

i=1

∂ϕj

∂K∗
i

⎡
⎣K∗

i (tn)

k(tn)
+
∑
h�=j

∂K∗
i

∂ah
Qh

1 +K
(1/2)
i

√
Qj

1

2
√

k(t)− k(tn)
+K

(1)
i Qj

1

⎤
⎦

ϕj=0

= 0 j = 1, 2..., J

The expression above states that coefficient Qj
1 of the linear contribution in expansion (17) at j-th

crack tip is non vanishing if and only if4 K(1/2)j = 0, in which case:

∑
h�=j

∂ϕj

∂K∗ ·
∂K∗

∂ah
Qh

1 +
∂ϕj

∂K∗ ·K(1)Qj
1 = −

1

k(tn)

∂ϕj

∂K∗ ·K∗ j = 1, 2..., J (18)

According to equation (18), Qj
1 depends also on Qh

1 . If ∂K∗
∂ah shows an o(1) dependency on k(t)−k(tn)

(at this moment this is still an open problem) it comes out:

Qj
1 = −

1

k(tn)

∂ϕj

∂K∗ ·K∗

∂ϕj

∂K∗ ·K(1)
j = 1, 2..., J (19)

Assuming Ω = 2 and taking K(1/2)j �= 0 for all j = 1, 2, ..., J leads to5:

ϕ̇j = k̇(tn)
2∑

i=1

∂ϕj

∂K∗
i

(
K∗

i (tn)

k(tn)
+
∑
h�=j

∂K∗
i

∂ah

∂ah

∂k

∣∣∣∣
ϕj=0

+
∂K∗

i

∂aj

∂aj

∂k

∣∣∣∣
ϕj=0

)

= k̇(tn)
2∑

i=1

∂ϕj

∂K∗
i

⎛
⎝K∗

i (tn)

k(tn)
+ 2 (k(t)− k(tn))

[∑
h�=j

∂K∗
i

∂ah
Qh

2 +
∂K∗

i

∂aj
Qj

2

]
ϕj=0

⎞
⎠

= 0 j = 1, 2..., J

Assuming further that
∂K∗

i

∂ah shows no singular behavior when h �= j and taking into account of expan-

4This result corresponds to assumption (100) at page 492 in [15].
5The general case K(1/2)j �= 0 only for some j is a trivial extension of the following.
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sions (1) and (17), one gets:

ϕ̇j = k̇(tn)
2∑

i=1

∂ϕj

∂K∗
i

[
K∗

i (tn)

k(tn)
+ 2

∑
h�=j

∂K∗
i

∂ah
Qh

2 (k(t)− k(tn)) +K
(1/2)
i Qj

2

k(t)− k(tn)√
aj(t)− aj(tn)

]
ϕj=0

= k̇(tn)
2∑

i=1

∂ϕj

∂K∗
i

[
K∗

i (tn)

k(tn)
+ 2

∑
h�=j

∂K∗
i

∂ah
Qh

2 (k(t)− k(tn)) +K
(1/2)
i

√
Qj

2

]
ϕj=0

= 0 j = 1, 2..., J

By neglecting the higher order term k(t)− k(tn), it comes out:

√
Qj

2 = −
1

k(tn)

∂ϕj

∂K∗ ·K∗

∂ϕj

∂K∗ ·K(1/2)
j = 1, 2..., J (20)

According to equation (20), Qj
2 depends merely on the load factor k(tn) and on quantities pertaining

to the j-th crack tip: the presence of all other cracks is reflected by vectors K∗(tn) and K(1/2). As
this last term depends on the T-stress, so does Qj

2; if a straight elongation is considered, i.e. a∗ = 0 in
equation (3), Qj

2 can be evaluated from (20).
In the more general case, a∗ can be evaluated exploiting the normality law (12). In view of

expansion (1), equation (12) becomes:

−
(
K∗

1 +K
(1/2)
1

√
s
)
tan θ∗ = K∗

2 +K
(1/2)
2

√
s

whence the zero−order outcome:

tan θ∗ = −K∗
2

K∗
1

The 1
2
−order equation:

−K
(1/2)
1 tan θ∗ = K

(1/2)
2

allows the evaluation of a∗ in view of identity (3)

a∗ = − G2(θ)−G1(θ) tan θ∗

H1q(θ)Kq tan θ∗ −H2q(θ)Kq

T (21)

using the Einstein summation notation.

Concluding remarks
Within the present note, a relation between the angle of propagation θ and the angle θ∗ of the form
θ = 2θ∗ has been assumed. Indeed, a certain arbitrary is nested in this choice: it is the same degree
of freedom actually present in the choice of the crack propagation criteria. A more involved relation
θ = ς(θ∗) could be proposed in order to recover the crack propagation angle θ predicted by any
criteria: in this way, the degree of freedom in selecting a crack propagation criteria is transposed in the
selection of mapping ς . As long as the remaining part of the plasticity analogy is kept, in particular the
maximum energy release rate criterion for the safe equilibrium domain (13), the maximum principle
(7) and its descending outcome (15), any selection of ς keeps the convexity of the safe equilibrium
domain in the K1 − K2 as well as in the Amestoy-Leblon d planes, the respect of the constraint
K∗

1 ≤ KC
1 in mixed mode crack propagation, the correct energy dissipation at the crack tip.

The topic of the present note shows promising features and developments. Extending to linear
elastic fracture mechanics the enormous amount of knowledge pursued in the last decades in plasticity
is fascinating indeed, on several perspectives: theoretical, computational, educational.
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