
17th European Conference on Fracture
2 -5 September,2008, Brno, Czech Republic

A Numerical Analyse of Plane crack in Strain Gradient for Fracture 
Prediction in Brittle Material  

T. T. T. Pham1, a, J. LI 2, b and R. Abdelmoula 3, c  
1,2,3LPMTM, CNRS UPR 9001 - Institut Galilée, Université Paris 13 

99 Avenue Jean-Baptiste Clément 
93430 Villetaneuse, France 

apham@lmptm.univ-paris13.fr, bjia.li@lpmtm.univ-paris13.fr,  cradhi@lpmtm.univ-paris13.fr 

Keywords: Fracture criterion, strain gradient, cohesive model, size effect. 

Abstract: In this work, a new model is developed to predict the fracture in brittle material from a 
geometrical weakness presenting an arbitrary stress concentration. The main idea is to combine the 
strain gradient elasticity with a cohesive model. The proposed model allows us to consider the 
different stress concentrations, even if they present some singularity. This model uses three material 
parameters which are  the ultimate stress,  the critical energy release rate and l the 
characteristic length which represent material heterogeneities at a microscopic scale as in most of 
the strain gradient theories. We also present the potential extension of the theory to interpret the size 
effect. The influence of the default size (hole, inclusions) on the fracture behaviour is considered. 
The present model was implemented into a finite element code. A triangle finite element of 36 
degrees of freedom is used for massive elements. We developed a cohesive element in order to 
describe the fracture procedure on the crack path. The cohesive force is calculated to predict the 
initiation process of the crack. We compare the numerical results with experimental data on PMMA 
specimens with circular holes of different sizes. It is shown that the present model predicts an 
inverse first power relation between the tensile strength and the size of the pre-existing crack. This 
prediction is in accordance with experimental evidence. It is demonstrated that the effect of the 
volumetric strain-gradient term corresponds to the shielding of the applied loads leading to crack 
stiffening; hence the present model is able to capture the commonly observed phenomenon of high-
effective fracture energies in brittle materials. In contrast with conventional fracture theories unable 
to describe well this size dependence, the introduction of the strain gradient theory together with the 
cohesive model seems to be an appropriate approach to brittle material fracture. 

c� cG

1. INTRODUCTION 

A nature understanding of the crack's development process is very important in the research of 
mechanicals fracture materials. Experimental research affirms that the heterogeneity has an 
important influence on the material fracture. In real structures, the failures are often initiated from a 
few geometrical weaknesses near which stress concentrations are formed. In brittle materials, the 
crack initiation often followed by unstable crack propagation. Thus leads to the final failure of the 
structure.  

The classical linear elasticity has many limitations because it is not valid near the crack tip with 
the stress value become infinity. Barenblatt(1962) [2] introduced the foundation of the cohesive 
model research of material fracture. In this model, Barenblatt supposes a transition region exists in 
the tip of the crack. The forces of cohesion act on the crack's faces when an external loads. These 
forces reach zero when the distance between two faces of a crack surpass the critical value . The 
physical idea is that the density factor is zero at the limit point of the cohesive region. Singular 
stress in classical theory becomes non-singular with cohesive model.  

c�

Limitations of the classical model are due to the dominance of micro-structural effects and local 
interaction in the material instead of the large scale which is more closes the nature physical of the 
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deformation. In order to over come this limitations, we use the long-rang atomic interactive forces at 
a macro scale into the continuum theory. The effect of long-range atomic interaction is expressed by 
a characteristic length scale into the continuum theory. This is enough to eliminate stress singularity 
at the crack tip. Many theories combine non-local elasticity and higher order continuum like the 
couple stress theory of Mindlin and other gradient elasticity theories which we present in the 
following one of these.  

2. GRADIENT ELASTICITY THEORY 

In strain-gradient theory of elasticity, the strain energy density function is assumed to be a function 
of not only the first gradients, but also of the second gradients of the displacement field.  

 
),( ijkijww �� ��              (2.1) 

 
      Following the principle of virtual work, variation of the total potential energy internal work is 
equal to the variation of work caused by the external forces. The macroscopic strain coincides with 
the micro-deformation. 
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      The second-order tensor , which is conjugate in energy to the macroscopic strain, is 
symmetric, whereas the third-order tensor  , which conjugates to the strain-gradient is called the 
double stress and is symmetric with the last two indices . The first index denotes the plane 
on which doubles tress is acting, the second index denotes the direction of the lever arm and the 
third index denotes the direction of action. 
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      We apply the divergence theorem to equation (2.8). This we have: 
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       The variation of work done by the external forces: 
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      where  and  are traction and double traction.  it i
    
The form proposed by Aifantis, which is a special case of Mindlin theory, is as follow: 
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With the conjugate equation (2.4) we obtain: 
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3. COHESIVE MODEL THEORY 

The cohesive forces depend on the separation distance between the two crack lips. This zone 
develops progressively as the remote load increases until the separation energy provided by the 
remote loads overcomes the cohesive energy due to the cohesive forces. Once this critical state is 
achieved, the crack propagation is supposed to occur. In general, we can define a cohesive 
potential ])([�� , where ][�  is the displacement jump between two faces of the crack, such that: 
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      We define a cohesive potential as follows: 
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      with defined as the effective displacement jump, as follows: e�
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      where a, m, n,  and are materials constants. cl max�
      The dual quantity related to the normal separation is the cohesive force T. With (2.24), we have 
for : max0 �� �� e
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      with  is the effective cohesive force eT
      In order to determine the value of and a, we suppose that the effective cohesive traction  
is limited by the ultimate stress of the material , which is measured by uniform tension tests. We 
obtain: 

max� eT

c�

 

   

�
 

!
"
#

$
�

�
�� n
n

n

c

nn
a

11
1

�
          

�
�
��

�
�



�

���

�
���

�
� ��

1
1

2
1

11
1

max

n

nnG

c

n
n

n
c

�
�                        (3.5) 

 

4. FINITE ELEMENT FORMULATION 

Massive elements 

The strain gradient elasticity is: 
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      We remark that the second derivative of strain is defined if the displacement function exists 
upon differentiating three times. Hence, the finite element has to assume the continuity in 
displacement, displacement gradient and strain gradient at the nodes and all along the elements 
edges. The finite element used in this work to interpolate displacement field is a higher-order 
triangular with quintic polynomial like the figure 1.  

 
Figure 1: Massif element 

 
 
      It has three nodes with six degrees of freedom per node for each displacement component. There 
degrees of freedom are the displacement, its two derivatives and its three second derivatives. Hence, 
the total numbers of degrees of freedom per element are thirty six. 
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Cohesive elements 

      We define a 4-node cohesive element with nodes 1, 2 belonging to and the nodes 3,4 
belonging to  like the figure 2. 

1S

2S

 
Figure 2: Cohesive element 

 
 

The displacement jump between the two surfaces described in the global coordinate is therefore: 
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5. RESULTS AND DISCUSSION 

5.1. Verification of the model by the experimental results 

This work is carried out on the shaped PMMA plates with a central hole under uniaxial tension. The 
mechanical characteristic of material are: the elastic modulus E=3000 MPa, the Poisson 
ratio 36.0�' , the ultimate tensile stress  MPa, the critical release energy 
rate . The section of the specimens is 10x20mm. The diameters of central hole can be 
d = 0.25, 0.5, 0.75, 1, 1.5, 2, 3mm. Our numerical results are compared with the experimental 
results obtained by Li and Zhang [6]. 

72�c�
m/NGc 290�

In this work, we use the triangle element for strain elements and the cohesive elements are 
placed on the ligament in order to assess the fracture process. The remote load is applied on the top 
of the plate. The fracture loads are calculated by an incremental procedure. The displacement is 
applied gradually. At each step, iteration is carried out until convergence. When the optimal load is 
reached, the structure is completely separated at the ligament. 

The size effect is observed by the test results using the different holes diameters. It is clear that 
the strength of the specimens depends strongly this diameter. The critical load increases as the holes 
diameters decreases. The unknown material parameter is the characteristic length l in the strain 
gradient element and in the cohesive element. The results illustrated clearly the influence of l in 
the strength of the material. It is showed in the figure below. The experimental results are plotted to 
compare with of the numerical model. As a result, we see that the model describe well the size 

cl

effect whatever the value of l. The resistant capacity of material increases with the increase of the 
value l. For PMMA we realize that with l=0.5mm the model corresponds to experimental results. 
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Figure 3: Local stress with L = 0, L = 0.5 and R = 0.5mm 

 

 
Figure 4: Predicted local stress and critical loads with different length parameter l 

 

5.2 Validity of the model 

radient model is suitable to describe the size effects in a 
terials. The main parameter model is the characteristic length l. This 

er to exp
tudied the 

s. First, the strain gradient modifies the cohesive energy constitution. The 

      It is well known that the strain g
microscopic scale in some ma
length parameter represents the influence of the microscopic scale of the material heterogeneities 
such as the distance of atoms in crystal, the average chain length in polymers, and the average size 
of grains in alloys and so on. In the literature, the measurement of this parameter is often based on 
the materials response at a microscopic scale. These works indicate that the characteristic length 
scale for non-local effects is at the order of several nanometres for pure metals whereas it may be 
larger for polymers and composites. In this work, we realize that this parameter for PMMA 
materials mml 5.0( . This value provides a good agreement between test results and model 
predictions. But this value is so much larger than values usually measured for polymers.  
       In ord lain these results, we return at the characteristic physical of length parameter. 
Many researches in the literature support this argument. Ravi-chandar and Yang have s
dynamic fracture in several polymers including PMMA. They showed the existence of a large 
number of micro cracks before final failure in the PMMA under monotone or cyclic loading. 
Therefore, the heterogeneity increases in the damaged PMMA due to the nucleation and the growth 
of the secondary micro cracks. Thus the characteristic length l in the damaged of PMMA cans 
become much larger. 
       In short, we introduce the second gradient into the cohesive model. We can notice two 
complementary effect
cohesive energy needed to separate the two surfaces of the crack includes not only the part due to 
the displacement jump, but also the part due to the displacement gradient. The second effect with 
the introduction is that the material becomes stiffer. As a consequence, the material near a stress 
concentration source is stiffer that under a uniform traction. 
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 that this influence obviously not only 

On first strain-gradient theories in linear elasticity", Int. J. Solids 
 Vol.4, pp. 109-124. 

train gradient plasticity", Journal 
71. 

31-4559. 
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      And we have also attempted to assess the influence of the default (holes, inclusions) size on the 
fracture behaviour of a brittle material. Experiments showed
occurs at a microscopic scale, but also at a macroscopic scale. This size dependence can not be well 
described by conventional fracture theories. The introduction of the strain gradient theory seems to 
be an appropriate approach. 
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