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Abstract. Steel profiles, such as angle sections in beams and girders, with slightly tapered cross 
section sides are not uncommon in older structures. Further, the fracture toughness of older and 
inhomogeneous steels varies in general across the thickness of a sample. The thickness of a 
machined, standard parallel-sided specimen of a tapered sample is in practice seldom more than 60-
70 % of the full sample thickness and such a specimen captures in general inferior core material 
only.  In view of this conundrum, a modified three point bend specimen with partly tapered sides 
has been designed so as to accommodate tapered samples. The project includes calibration, testing 
and evaluation of the modified specimen. The part of the project, which is reported here, is part 
analytical and part numerical and aimed at calculation of the stress intensity factor for various crack 
lengths, taper and specimen cross section proportions. 

Introduction 
Fracture mechanics is today frequently used in fitness for purpose assessments of structures of older 
steels, whose toughness properties often are unknown. The most common test specimen type in 
present assessment work is the three-point bend specimen, which is plane-parallel and of constant 
thickness, while common types of profiles in older structures, such as angle sections in beams and 
girders, often have slightly tapered sides. Samples taken from such profiles are presently machined 
plane-parallel and it is not uncommon that all original sample surfaces are removed. The thickness 
of a machined specimen is therefore, in practice, only 60-70% of the original sample. As the 
toughness of the surface material generally is  superior,  an 
unfairly low toughness might then be obtained for older and inhomogeneous steels. 

In the present project the standard three-point bend specimen, as given in ASTM E-1820 [1], is 
modified so as to accommodate steel samples with tapered sides. The modified specimen allows 
determination of a fair effective toughness since the full sample thickness is included. In particular, 
the  surface  material  of generally superior toughness is retained. Preserving the    
surface material in testing has often been found critical in practice. 

The cross section of the modified specimen, inscribed in a typical tapered profile, is shown in Fig. 
1. The project comprises development, calibration and testing of the modified specimen, including 
derivation and verification of expressions of the stress intensity factor  and the J-integral as 
functions of relevant parameters. The part of the project which is reported here, is part analytical 
and part numerical and is aimed at obtaining the stress intensity factor as influenced by the modified 
geometry. 
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Figure 1. Cross section of modified three point bend specimen.  

W/2 W is specimen height, B specimen thickness of the bottom half and 
�B thickness at the top of the specimen.
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Stress intensity factor estimation 
To get an estimate of the effect of the modified geometry on the stress intensity factor, the method 
by Kienzler and Herrmann [2, 3, 4] to obtain approximate Mode I stress intensity factors in cracked 
beams has been used. These authors have shown that very simple and close approximations can be 
obtained with elementary bending theory [4]. For pure bending of an edge cracked beam Bazant [5] 
showed that the accuracy of the stress intensity factor estimation was improved by introducing a 
known factor of proportionality. Gao and Herrmann [6] then showed that the correction factor could 
be determined through matching with standard limiting crack length solutions. The method of 
Kienzler and Herrmann has later been used by many others, e.g. [7-9]. In this work the original 
method of Kienzler and Herrmann [4] is exploited to obtain a close approximation of the stress 
intensity factor for both the original and the modified three point bend specimen. No improvement 
over existing methods is obtained, but, the present procedure offers a convenient treatment of the 
modified geometry. 

The three point bend specimen 
The stress intensity factor for the three point bend specimen is obtained from [10] 
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where �  is a factor of proportionality to be determined, E Young’s modulus, B specimen thickness, 
b one half of the width of the crack and U the potential energy. For controlled loading condition  U  
= -W,  where  W  is the specimen strain energy, which  according  to ele- 
mentary beam theory is 
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in standard notation. For the standard three-point bend specimen the stress intensity factor is 
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where  is a dimensionless geometry function. 
�  = 1.32. The parameterIn pure bending of a single edge notched beam Bazant [5] obtained �  

can alternatively be obtained through comparison with a known geometry function. The function 
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which has been obtained by matching Eq. (4) to the standard ASTM geometry function for the three 
point bend specimen, using a third order least square approximation, is a close fit, within less than 
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0.5 % from the ASTM values for all crack lengths. In Fig. 2 is shown the geometry function Eq. (4) 
and the function  according to Eq. (5). � Wa /� �
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Figure 2a. Geometry functions of the stress 
intensity factor for the standard three-point 
bend specimen. 
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Figure 2b. The function )/( Wa� in the 
Present solution. The dash-dotted line shows 
�  =1.32. 

The modified three-point bend specimen 
The cross section of the modified three point bend specimen has partly tapered sides, Fig. 3a. 
  

 
a) uncracked section 

 

 
b)  5.0/0 �� Wa

 

 
c)  0.1/5.0 �� Wa
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Figure 3. Three point bend specimen with partly tapered cross-section. 1��  is a dimensionless 
shape factor.  

Cross section data/characteristics 
A* and I*. The cracked section is dealt with in two parts, depending on crack length. In the crack 
length range ,  Fig. 3b, the length of the crack front is  5.0/0 �� Wa
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where  denotes a non-dimensional part of B*, etc., and the cross section area of the ligament 
(the area under B* in Fig. 3b). 
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The moment of inertia of the ligament is 
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In particular, for ze crack length, ro , the total cross section area is � �0
a
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For the remainder of the cracked section, Fig. 3c, the crack length range is 0
and  A* and I* in this range are given by  
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� . The coefficient �  in Eq. (2) is a function of the cross-section shape. Its derivation 
comprises several steps and the point of departure is the bending shear stress  
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and in the crack length range  from  0.1/5.0 �� Wa
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The strain energy density due to shear is &)½
W , where &  and )  are shear stress and strain, 
respectively. Using Hooke’s law on the form  )& G
 , the  total  strain  energy per unit length of 
the tapered and cracked beam can be written  
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where   are given by Eqs. (16) - (23) and  )(z%&
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Introducing the dimensionless variable  Wz /2
* ,  Eq. (24),  after substitution of Eqs. (17) - (23) 
and (25), can be written 
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The coefficient �  is defined by the expression 
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 , and we get for � , which is a function of taper and crack length, 
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This expression has been evaluated numerically according to the midpoint trapezoid integration rule 
and is shown graphically in Fig. 4. It is noted that for zero crack length  is an almost linear 
function of 

� 0,�� �
�  but  is far from linear in a. As expected, for a rectangular cross section � �a,��

2.1),1( 
a�  irrespective of crack length. The effect of taper upon the shear strain energy 
coefficient is rather weak, at the lower limit of the range of interest, or �  = 0.5 and crack length 

 0.4, the coefficient ,Wa / �  is some 96 % of the value for a rectangular cross-section. 
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Figure 4. Shear strain energy coefficient �  
versus crack length and taper. 
� 0.5, 0.6 … 
1.0 down upwards. 

Stress intensity factor 
The geometry function of the stress intensity factor is now obtained by substitution of Eqs. (6) - 
(15) and (28) in (4) and simplification, for  5.0/0 �� Wa
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with  according to Eq. (5) and for   � �a� 0.1/5.0 �� Wa

� �
� �

� �
2/1

3 )(
)0,(

1
1

)(
1

1
124

32
/

��

�
�
�

��

�
�
�

�
�



�

�
�
�

�
���

�
���

�
	

	
�����

�
���

�
	

	



�
����

�
�

AI
e fWafWa

Waf  (30) 

where now �  =1.32. 
In Fig. 5 is shown the normalised geometry functions for the modified specimen type, obtained 
from Eqs. (29) and (30), with taper in the range 15.0 �� � .  

Numerical 
The stress intensity factor along the crack front has been calculated numerically for specimen 
thicknesses B = W/4 and W/2, crack lengths  a/W = 0.4, 0.5, 0.6 and taper �  = 0.5 and 1.0, in all 
twelve different cases. A general, 3D finite element program, ANSYS® 11.0, with the options linear 
elastic material model, 20-node elements and small-strain deformation theory, was used. Due to two 
perpendicular planes of symmetry, only one quarter of the three point bend specimen was modelled 
and the total number of elements in the finite element mesh was of the order 21000. The element 
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size is varying: the smallest elements appear in the crack tip region and their size is of the order 
0.003 times the crack length. Standard singular elements were used at the crack tip. Different crack 
lengths were obtained by shifting a fixed mesh region around the crack front and by stretching 
elements crack-length-wise outside this region. The shifted region is centred at the crack tip and its 
radius approximately 0.1W.  An example of the stress intensity factor along the crack front is shown 
in Fig. 6, for cross section proportions B = W/2, crack length a/W = 0.5 and taper �  = 0.5 and 1.0. 
The results for all cases considered are summarised in Table 2. For comparison, also the results of 
the 2D estimation are shown. 
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Figure 5. Normalised geometry function of 
the stress intensity factor for the modified 
three point bend specimen. �  = 0.5, 0.6 … 
1.0 top down to the left. 
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Figure 6. Influence of taper �  upon 
normalised stress intensity factor, IKK , 
along the crack front. 
 

 
 
Table 2. Influence of taper upon normalised stress intensity factor IKK . 
  Taper �  = 1.0 �  = 0.5 
  3D fem 2D est 3D fem 2D est 
 a/W =  max mean max mean 
B = W/4 0.4 1.020 0.991 1.004 1.060 1.011 1.032 

0.5 1.018 0.978 1.000 1.019 0.968 0.981 
0.6 1.020 0.986 0.997 1.018 0.984 0.988 

B = W/2 0.4 1.017 0.984 1.004 1.072 1.001 1.032 
0.5 1.014 0.979 1.000 1.028 0.956 0.981 
0.6 1.014 0.975 0.997 1.016 0.973 0.988 
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In Fig. 6 and Table 2 are shown the calculated stress intensity factor K normalised against the 
corresponding ASTM stress intensity factor . In the 3D case, there are essentially three effects of 
taper upon the stress intensity factor a) the maximum value, at the centre of the specimen, is slightly 
increased, some 2 %, b) the mean value is slightly reduced, some 2 % and c) the minimum value at 
the specimen surface is reduced to a much larger extent. In the 2D case the estimated value of the 
stress intensity factor is slightly reduced by the taper, Fig. 6. The reduction is of the order 2% and is 
in close agreement with the reduction of the mean value of the 3D calculation. The slight increase 
of the maximum value of the stress intensity factor at the specimen centre and the larger reduction 
at the specimen surface are not reflected by the 2D estimation. The influence of taper upon the 
stress intensity factor is, on the whole, however very small, within some few percent, in all cases 
considered. In view of this, the 2D estimation procedure to obtain the stress intensity factor for a 
tapered specimen is judged to yield sufficient accuracy in practice, in particular as other 
uncertainties might well cause much greater errors.     
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