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Abstract 
The weight function in fracture mechanics relates the stress intensity factor at the tip of a 
crack in an elastic body to a point load at an arbitrary location. For a piezoelectric material, 
this definition is extended to include the effect of point charges and the presence of an 
electric displacement intensity factor at the crack tip. Applying the principle of linear 
superposition and BETTIs theorem of reciprocity, the weight functions for the different crack 
opening Modes are derived from any known mixed-mode solution in terms of displacements 
and electric potentials of the cracked body under specific electromechanical loads. 
Furthermore, another type of weight functions is derived, relating displacements and electric 
potentials in a cracked body to the field intensity factors. As an example, both types of weight 
functions are calculated for the GRIFFITH crack in a piezoelectric material. 

 

Introduction 
Fracture mechanics of piezoelectric and ferroelectric materials is of increasing interest for 
applicants of smart materials. The analytical framework of piezoelectric fracture mechanics 
has been established in the early 90s by researchers like Sosa [1], Pak [2] or Park and Sun [3] 
giving rise to an increasing interest of scientists in this field. Anyhow, the concept of crack 
weight functions, well known in fracture mechanics of classical materials since 1970 
(Bueckner [4]) has only recently been extended to piezoelectric materials by Ma and Chen [5] 
as well as McMeeking and Ricoeur [6]. In [5] the derivation of the weight function is based 
on a work-conjugate integral following Bueckner, in [6] the derivation goes back on a 
procedure published by Rice [7] leading to a more transparent formulation. 

The crack weight functions derived in this article are twofold. The first type relates the 
stress and electric displacement intensity factors to point loads and charges acting at an 
arbitrary location of the piezoelectric body. The second type is used to calculate field 
intensity factors due to local displacements/electric potentials located anywhere in the 
cracked body. The weight functions for cracks in piezoelectric materials are formulated from 
MAXWELL relationships among the energy release rate with displacements and the electric 
potential (type 1) or stresses and charge densities (type 2) as dependent variables and applied 
loads and electric charges (type 1) or displacemens and electric potentials (type 2) as 
independent variables. 

Applying the principle of linear superposition and BETTIs theorem of reciprocity, the 
weight functions for a body with a crack are calculated from any known mixed-mode solution 
of the boundary value problem. Thus, knowing the solution for one specific set of boundary 
conditions, every mixed boundary value problem of the body under consideration can be 
solved in terms of K-factors by integrating weight functions and electromechanical loads 
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along the DIRICHLET and NEUMANN boundaries. Results are presented for the GRIFFITH crack, 
calculating weight functions for point loads on the crack faces and for dislocations on the 
ligament. 

 
Fundamental relations of piezoelectric fracture mechanics 
The mathematical fundamentals of piezoelectric fracture mechanics can be studied in early 
articles (see e.g. [1,2,3]) or lately published work reviewing the field as Zhang et al. [8] or 
Qin [9]. The phenomenological description of the field problem under quasistatic loading is 
governed by the balance equations of linear elasticity and electrostatics: 
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with the stress tensor ijσ , the electric displacements , volume forces  and volume 
charges denoted as 
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Vω . Being the unit normal vector  of an arbitrary plane within the 
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The strain tensor ijε  is deduced from the displacement vector  as iu

( , ,
1
2ij i j j iu uε = + )  (3) 

and the electric field vector  is derived from the electric potential jE ϕ  as 

,jE jϕ= −  (4) 

In piezoelectric materials mechanical and electrical fields are coupled, which is described 
by the constitutive equations of piezoelectricity: 
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where ,  and  denote the tensors of elastic, piezoelectric and dielectric 
constants.  and 

ijklC mije nmκ

ijklC nmκ  are symmetric and positive definite. In fracture mechanics of 
piezoelectrics an additional electric displacement intensity factor  is introduced, 
following the definition of stress intensity factors in classical fracture mechanics: 
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with 2 ( 0D )θ =  denoting the electric displacement on the ligament. The asymptotic crack 
tip fields ( ) can be written as 0r →

1( , ) ( ) ( ) ( ) ( )
2
1( , ) ( ) ( ) ( ) ( )
2

I II III IV
ij I ij II ij III ij IV ij

I II III IV
j I j II j III j IV j

r K f K f K f K f
r

D r K g K g K g K g
r

σ θ θ θ θ
π

θ

θ θ θ θ
π

⎡ ⎤= + + +⎣ ⎦

⎡ ⎤= + + +⎣ ⎦θ
 (7) 

with the polar angle θ  around the crack tip and the angular functions ( )ijf θ  and ( )jg θ . 
Introducing an electromechanical energy release rate G, a generalized IRWIN relationship can 
be formulated connecting G to the field intensity factors: 
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with the IRWIN matrix [Y] and the total potential energy Π  stored in the body. 

 
Piezoelectric crack weight functions 
Definitions of the piezoelectric weight functions 

The weight functions [ ]h  connecting point forces/charges { }F  at the location xr  in a body 

with a crack of length  to field intensity factors l { }K  are defined as 
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In Fig. 1 an arbitrary piezoelectric body with an edge crack subject to point loads ( ,Q)F
r T and 

generalized surface tractions { } ( , T
St t ω= )r

is shown. The field intensity factors due to line 

loads { }t  distributed on a NEUMANN type boundary  are calculated by integration: tS
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Eqs. (9) and (10) define weight functions of the type 1. The second type of weight 
functions relates generalized displacements { }u  to the field intensity factors: 
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FIGURE 1. Piezoelectric body with an edge crack subject to point loads and 
electromechanical surface tractions. 

Prescribing displacements and electric potentials along a DIRICHLET type boundary , see 
Fig. 1, K-factors are calculated by integration: 
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If both types of weight functions [ ]h  and uh⎡ ⎤⎣ ⎦  are known for a specific body with a 
crack, a general mixed boundary value problem with prescribed tractions/charges on the part 
of the boundary  and displacements/electric potentials on  can be solved in terms of K-
factors superimposing Eqs. (10) and (12). 

tS uS

 

Derivation of type 1 weight functions [ ]h  

In the following two different types of loads are considered a body can be exposed to: (1) a 
point load {F} and (2) a distributed boundary load acting on the structure. The latter will be 
referred to as “reference load” in the following. According to the superposition principle the 
field intensity factors can be expressed as 
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{ } { } [ ]{ }(2)K K h F= +  (13) 

where  denotes the four intensity factors due to the reference load (2) and the weight 
functions [h] are introduced by Eq. (9). Assuming the validity of BETTIs theorem of 
reciprocity, the principle of CASTIGLIANO can be formulated 
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equating the partial derivatives of the work of external loads W with respect to generalized 
point forces {  to generalized displacements at the location ( )}F xr xr , i.e. . Differentiating 
both sides of Eq. (14) with respect to the crack length l  and introducing the energy relase 
rate G according to Eq. (8) gives 
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The energy release rate is related to the field intensity factors of the combined problem, 
see Eq. (13), applying the IRWIN relationship, see Eq. (8). Taking into account the symmetry 
of the IRWIN matrix [Y], the derivative with respect to {F} can be written as 
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Eqs. (15) and (16) result in a linear system of equations for the calculation of the unknown 
weight functions, if the point loads {F} in Eq. (16) are set to zero: 
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In general, to determine the 16 unknown weight functions at a location xr  in a body with 
the crack length , four different reference loads have to be chosen leading to four linear 
independent sets of intensity factors {K}

l
(2) and to four generalized displacements {u}(1) at xr . 

Analytical solutions e.g. for the GRIFFITH crack may directly yield all weight functions in a 
closed-form. 

 

Derivation of type 2 weight functions [ ]uh  

As in the previous section, we consider the two loading conditions (1) and (2), where the 
reference load (2) again represents an arbitrary electromechanical (mostly boundary) load 
leading to known intensity factors. With [C] being a symmetric stiffness matrix, generalized 
displacements and tractions can be related to each other 
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where {u}(2) denotes the displacements/electric potentials on the boundary where the 
distributed loads (2) are acting. The problem (1) is defined by point loads {T} having the 
same units as the generalized stresses {t}. The superscripts at the stiffness matrices refer to 
the load cases (1) and (2). Due to BETTIs theorem of reciprocity the cross stiffnesses [C](12) 
and [C](21) are equal. Making use of Eq. (18), the work of the external forces W can be 
calculated: 
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Forming the derivative of the work W with respect to the generalized displacements {u}(1) 
and accounting for Eq. (18) yields 
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Eq. (20) has a similar structure as Eq. (14) corresponding to CASTIGLIANOs principle. 
Therefore, a relationship between the energy release rate G and point forces, similar to that in 
Eq. (15) can be derived: 
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According to the definition of the weight functions [hu] in Eq. (11), the field intensity 
factors for a superposition of the two load cases are 
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 The derivative of the energy release rate with respect to the displacements at the location 
of the point force is determined from Eq. (8) and Eq. (22): 
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The unknown weight functions (type 2) are calculated from a linear set of equations 
accounting for Eq. (21) and assuming vanishing displacements and electric potentials {u}(1) 
on the DIRICHLET boundary where [hu] is to be determined: 
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Again, four different reference loads have to be chosen leading to four linear independent 
sets of intensity factors {K}(2) and to four generalized stresses { } ( , )TT t ω=

r
 at xr . 

 

Weight functions for the GRIFFITH crack 
The considerations in this section are restricted to the crack plane as reference plane for the 
calculation of weight functions. Displacements and electric potentials on the faces of a 
GRIFFITH crack of length l  with an electromechanical load {t} on the crack faces as 
reference load (2) are (see e.g. Ricoeur and Kuna [10]) 
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if x1 is the coordinate along the crack faces with its origin in the center of the crack. The 
stresses in front of the crack tip in the plane of the ligament are 
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with the identity matrix [I]. The type 1 weight functions for both crack faces considering 
the right-hand crack tip are calculated from Eq. (17): 
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The type 2 weight functions for point dislocations in terms of displacements and electric 
potentials on the ligament are calculated from Eqs. (24) and (26): 
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Summary 
Weight functions for cracks in piezoelectrics have been derived. The first type quantifies the 
influence of point forces and charges on the field intensity factors at the crack tip. The second 
type calculates intensity factors due to displacements and electric potentials. As an example, 
both types are calculated for the GRIFFITH crack. 
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