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Abstract 
The constitutive law of metallic polycrystalline thin films is determined on the basis of the 
consideration of the evolution, accumulation and formation of dislocations in thin 
film/substrate systems, taking into account the formation of misfit dislocations. An equation 
for the evolution of the dislocation density and the constitutive law for a thin polycrystalline 
metallic film are derived on the basis of the dislocation-density-related approach to the 
constitutive modeling of materials, taking into account the formation of misfit dislocations 
due to the threading dislocations movement, nucleation and multiplication of dislocations due 
to the interaction between misfit dislocations (like the Hagen-Strunk mechanism) as well as 
the effect of the misfit dislocations on the moving dislocations. It is shown that yield stress is 
proportional to a square root of a linear function of 1/L, where L is the smallest characteristic 
length in a film (either thickness or grain size).  

 
Introduction 
Thin films present a key element in many devices, as integrated circuits, magnetic storage 
media, thermal sensing elements, optical filters, parts with protective (anticorrosion) coatings, 
etc. The performances and reliability of these and other thin film/substrate structures are 
determined to a large extent by the strength and fracture resistance of thin films on substrates.  

The purpose of this work is to determine the constitutive law of metallic thin films on the 
basis of the consideration of the evolution, accumulation and formation of dislocations in thin 
film/substrate systems, taking into account the formation of misfit dislocations.  

The deformation behavior of metallic thin films on substrates is influenced by the 
dimensional constraints on the dislocation movement [1], interface effects and microstructure 
of the film (grain boundaries, etc.) [2]. The effect of the film thickness on the strength of the 
film has been studied in many works. Table 1 shows several relations between the yield stress 
and the film thickness. 
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Table 1. Relations between the Yield Stress, and the Grain Size and Film Thickness 

Relation between the yield 
stress and film thickness 

Author Approach 

 (1/h) ln h, [3] Analysis of the energy changes related with the 
extension of a misfit dislocation. 

(1/h) (ln h + f)  [4] Generalization of the model by Freund for the case 
of the motion of a mixed (edge/screw) dislocation, 

and for to the films on substrates under biaxial stress. 

1/h [1] The stress necessary for yielding by dislocations 
channeling mechanism is determined from the 

condition that a dislocation loop fits inside the film 

22 / sourceHP dK τ+  (while a 
smaller dimension, either grain 
size or film thickness, controls 

the flow stress), 

[5-8] Hall-Petch model [5], discrete dislocation simulation 
method [6-8] (in three dimensions). 

A/h+B/d [9] Comparison of the the work done by a slip and the 
energy of going a dislocation loop along the sides 

and the bottom of the grain, in a polycristalline film. 
 

Evolution of dislocation density and deformation of thin films 
In order to derive a constitutive law for a thin film, we assume a power-law kinetic equation, 
relating the equivalent plastic strain rate and the equivalent stress [10, 11]: 

pε&  = ( /0ε& σ σ̂ )m (1) 

where - equivalent plastic strain, and m – material parameters,  and pε& 0ε& σ σ̂ - equivalent 

stress and internal variable of the material state. A stress to move a dislocation past two 
obstacles (in this case, the film/substrate interface and the free surface or oxide layer) is 
τ=αµb/l=αµbρ1/2, where b – magnitude of the dislocation Burgers vector, l – distance between 
obstacles, µ=MG, M- average Taylor factor, G – shear modulus, α – a coefficient, ρ~1l/2 – 
dislocation density. According to Estrin [10, 11], the equation has a general validity. It is 
“obvious from dimensional considerations that the glide resistance must be given by Gb/L, 
where L – characteristic obstacle spacing in the glide plane”. Von Blackenhagen [12] stated, 
however, that it is unclear, whether this equation is applicable for the dislocations in thin 
films, if the film thickness is of the same order as the Burger vector of the dislocations. 
Assuming that the film thickness is much more than the Burgers vector of a dislocation, we 
use this equation in our analysis. 
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Now consider the main factors influencing the dislocation density evolution in the metallic 
film: 

• immobilization of dilocations at the film/substrate interface, grain boundaries and free 
surface; annihilation of dislocations stored at impenetrable obstacles, 

• nucleation and multiplication of dislocations due to the interaction between misfit 
dislocations (like the Hagen-Strunk mechanism, when two crossing misfit dislocations 
annihilate locally and produce 2 new mobile dislocations, as well as other 
mechanisms),  

• other misfit dislocation effects (like the formation of misfit dislocations due to the 
threading dislocations movement). 

Following [10], the shear strain increment Mdεp can be determined in terms of 
“dislocation density increment dρ associated with immobilization of mobile dislocations at 
impenetrable obstacles”, as the film/substrate interface and the free surface:  

dρ/ dεp = (M/b) ρ   (2) 

Romanov et al. [13] considered the evolution of the dislocation density in films in the 
framework of the analogy between the reaction kinetics in chemical systems and the 
dislocation evolution. They derived a similar equation for the source term in the differential 
equation for mobile dislocations in [13]: from dρ/dt = Aσ(x) +...., and assuming ραµσ b= , 

one obtains dρ/dt = A(M/b) ρ  +... 
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FIGURE 1. Thin polycrystalline film on a substrate. The grains are much smaller than the 
film thickness.  

The mean free path L can be in this case identified with the film thickness, or grain size. In 
order to take into account the annihilation of dislocations stored at impenetrable obstacles 
(interface and free surface), we introduce the second term –M k2 ρ, and have: 

dρ/ dεp = M(1/bL –k2 ρ),  (3) 

where L=d, k2- recovery coefficient.  
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The multiplication of dislocations (by the Hagen-Strunk mechanism, or by other 
mechanisms) can be taken into account by adding the term with a breeding factor, using the 
model by Nix [4]: 

dρ/dt=ρgv + , (3) 0ρ&

where g – breeding factor (a value of the order of 5...20 dislocations/mm [4]), - rate of 

nucleation of new dislocations in the substrate, v – dislocation velocity, v=B exp (C ), 

C= (U/kT)  , U – activation energy for the dislocation motion, 

0ρ&
2/1τeff

0τ h/sin/(bWττ disleff −= φ), φ 
- an angle defining the slip plane normal,(φ can be taken 54°, see [4]), - work required 
to form a unit length of dislocation (a function of the film thickness, Burgers vector and shear 
moduli of the film and the substrate). If one neglects , one may obtain: dρ/ dε

dislW

0ρ&
p = 

(ρgv/ )0ε&
m)( σσ) . 

The formation of misfit dislocations due to the threading dislocations movement can be 
described in the framework of the model by Nix [4]: vρdtdρmf = ,where mfρ is the density 
of misfit dislocations.  

• the stress governing the threading dislocation rate in thin films, is lower than the 
analogous stress in bulk material, due to the formation of the misfit dislocations, 

• effect of the misfit dislocations on the moving dislocations. 

The second effect is considered by substituting for the stress τ in all the equations, 
where φ). 

effτ
h/sin/(bWττ disleff −=

In [13], the “non-linear term” which accounts for the creation of climbing dislocations due 
to the gliding of threading dislocations, looks after some simplifications, as the term –cρ in an 
differential equation for dρ/dt. (It is assumed that the climbing dislocations are transformed to 
the misfit dislocations when the reach the interface. The formation of the misfit dislocations 
by direct reaction between threading dislocation and interface is neglected.) Also, the 
blocking of threading dislocations by the misfit dislocations is neglected here. 

The final equation for the dislocation density looks like: 

dρ/ dεp = M(1/bL – ρ) + (ρgv+ )/ = M[1/bL – ρ 2k 0ρ&
pε& 02k /n1*

0
p )εε( −&& ] + 

(ρgv+ )/ , (4) 0ρ&
pε&

or  

dρ/dεp = - ρ, and 1a 2a ρaσ 3=  (5) 

where = M/bL+ / , = M  - gv/ , and = . 1a 0ρ&
pε& 2a 2k pε& 3a /m1

0
p )ε/εαµb( &&
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Assuming that the plastic strain rate =const and v=const, and integrating the equation, 
one obtains a formula for the dislocation density in a film: 

pε&

ρ= (  - exp[  (C-ε1a 2a p )])/ ,  (6) 2a

and the constitutive law: 

3aσ = [  - exp( (C - ε1a 2a p ))/ ] , (7) 2a 2/1

The equation (7) can be rewritten in the form: 

        ( /L- ) ,                               (8) =σ 1b 2b 2/1

where = M/b, =  exp( (C - ε1b 3a 2b 3a 2a p ))/ ] . The derived constitutive law for the 
thin polycrystalline films is similar to the equation derived by Friedman and Chrzan [5], and 
confirmed numerically by von Blackenhagen et al. [6-8] 

2a 2/1
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