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Abstract 
A closed cylindrical shell is weakened by a longitudinal surface (external or internal) crack. 
The shell material is taken to be ideally elasto-plastic or strengthening. The external load, 
crack size and material properties are assumed such that plastic strains develop like a narrow 
strip on the crack extension through the whole crack thickness. According to the cδ -model 
analogue the plastic strain strip is replaced by the surface of displacements and rotation 
angles discontinuity, and the plastic zone response to the elastic volume is changed for  
unknown forces and moments. Using the method of generalized coupling problems, the finite 
shell is replaced by an infinite one taking into account the boundary conditions at the ends of 
the initial finite shell. Thus, the  elasto-plastic problem is reduced to the  one on 
elastic equilibrium of the infinite shell with a through crack of unknown length, to which 
faces the unknown forces and moments are applied. The method for solving the elastic 
problem consists in obtaining a system of eight singular integral equations (four at the 
imaginary crack line and four at the shell ends 

D3 D2

Rle /±=α ) with unknown limits of 
integration and discontinuous right-hand sides. The algorithm of numerical solving the 
obtained system under the plasticity conditions for thin shells and conditions of forces and 
moment boundedness near the crack is proposed. For the shell under the internal pressure, 
rigidly fixed at the shell ends or hinge-supported, the crack front opening and plastic zone 
dependences on the geometric and mechanical parameters are analyzed. 

 

INTRODUCTION
Real structures contain different surface, internal or through defects (cracks, pores, 
inclusions, cuts etc.) having various geometry (nonregular as a rule). The faulty zone may 
contain several internal cracks of arbitrary shape. When developing the calculation schemes, 
these defects are replaced by cracks as the most dangerous ones from the strength viewpoint. 
It is assumed that these cracks are of ideal shape, have equivalent sizes and orientation. The 
calculation schemes for such replacement are given in methodical recommendations [1] 
concerning bodies of reactors and steam generators, pipelines, rotors of turbines and turbo-
generators, and other energy equipment to be calculated from the standpoint of crack growth 
resistance. The geometric parameters of structure elements and defects as well as the 
parameters of the stressed state are schematized. 

It should be noticed that even for an idealized non-through crack in thin-walled structure 
elements, the problem on stress distribution in its vicinity is very complicated because of 
three-dimensionality and a need for consideration of plastic strains. Therefore, for solution of 
such problems an approximate model based on the analogue of the cδ -model was proposed 
in Refs. [2-4]. In the abovementioned references, the unlimited ideally elasto-plastic shells 
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were examined. In this work we consider the limited shell, and its material is taken to be 
strengthening. 

 

BASIC EQUATIONS AND RELATIONS 
Consider a closed cylindrical shell of the thickness  and the length  referred to a three-
orthogonal coordinate system ( ), where 

h2 el2
γβα ,, Rz /=α  ( R  is the radius of the shell median 

surface,  is the distance along the generatrix), z Ry /=β  ( y  is the distance along the 
directrix),  is a coordinate normal to the median surface. The shell is weakened by an 
internal longitudinal crack at ; 

γ

0=β 0α<α ; 21 22 dhdh −≤γ≤+−  (Fig.1) ( , 
 is the crack length,  is the crack depth). Having assumed , we 

obtain an internal surface crack, and for 

Rl /00 =α

02l )(2 21 ddh −− 01 =d
02 =d  an external surface one. 
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Elastico-Plastic Shell with Internal Crack 

hat the shell stressed state is symmetric with respect to the surfaces  and 
e shall restrict ourselves to consideration of sufficiently deep cracks 

). The crack sizes, the level of external loading and material properties are 
uch that plastic strains in the crack vicinity extend through the whole shell depth as 
strip. Now, according to the analogue of the 

0=α

h6,0

cδ -model [5], the zone of plastic 
replaced by the surface of elastic displacements and rotation angles discontinuity, 
eaction of plastic zone material to elastic volume is changed for corresponding 
d moments. Assume that constant stresses  (  is the strength 
  is the yield point of the shell material) act on the crack extension in depth to 
rnal or internal shell surfaces, i. e. in the region 

2/)(0
ТВ σ+σ=σ Вσ

Тσ
] [00 ,αα−∈α , 

] [ hdhdh ,22 21 ]−∪+ . In plastic zones (on the crack extension along the length) the 
normal forces  and bending moment N M  act. They satisfy the plasticity condition 
ells [5]. 

within the scope of assumed model the elasto-plastic problem on a non-through 
he length  is replaced by the elastic problem on a through crack of unknown 02l
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length , where  is the unknown length of plastic zone. On the faces of this 
crack the following conditions for the components of perturbed stressed state are satisfied:  
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Here  are the normal force and the bending moment being the response of the 
material to a break of internal bonds over and under the crack, 

ll MN ,
Rl /11 =α . The normal force 

and the bending moment, according to the assumptions adopted for the stressed state in these 
problems, are defined according to the formulas 

;)(2 0
21 σ+= ddN l  ; ))((2 1221

0 ddddhM l −−−σ=

where  are the force and the moment at the crack line in a continuous shell caused by 
external loadings. 

0
2

0
2 , MN

Modelling of a Finite Shell 
The solution to the elastic problem is constructed by the method of generalized conjugation 
problems [5, 6] for modelling a finite shell by an infinite one with analogous mechanical and 
geometric parameters for lα<α  and by the distortion method [5, 7] for modelling a through 

crack 1α<α ;  by internal stress sources with unknown densities.  As this takes place, 
using the representation 

0=β

)()()( αχα=α kpp                    (2) 

a system of differential equilibrium equations in displacements, extended on the whole region 
occupied by the unlimited shell, has the following form: 

),,(),( βα′′+βα′= iijij gguL    3,1, =ji .                  (3) 

In relations (2) and (3) )(αp  and )(αkp are the unknown and given functions for infinite and 
finite shell, respectively; )()()( ee SS α−α−α+α=αχ −−  is the characteristic function for 
the region occupied by the finite shell; )(α−S  is the asymmetric unit function [6];  are the 
differential operators analogous to those for a homogeneous shell, but in a case under 
consideration according to representation of Poisson’s ratio 

ijL

)(αν  in the form (2), they have 
discontinuous coefficients;  are the displacement components of the shell median surface; 

 are the internal stress sources expressed in terms of the generalized functions and 
jumps of displacement and rotation angle across the crack line 
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[ ] )()()(2
0
22 βδαχα=ε cu ;   [ ] )()()(2

0
22 βδαχαθ=κ c  

),( βα′′ig  are expressed in terms of generalized functions and jumps of derivatives of the 
displacement components across the surfaces eα±=α : 
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)(βδ  is the Dirac delta function;  )()()( 11 α−α−α+α=αχ −SS ; 
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Procedure of Obtaining Integral Equations 
On the basis of the fundamental solution of the system (3) and the convolution operation, 

the integral representations for the parameters of the stressed-strained state are constructed. 
These representations are expressed in terms of six unknown jumps of displacement and their 
derivatives. 

6,1,),()(),()(),(
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Here 
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),( βαijQ  are combinations of derivatives of the fundamental solution to the system of 
differential equations (3). 

Integral representation (6) expresses the components of disturbed (due to a crack) stressed-
strained state of infinite shell in terms of six unknown functions – the densities of internal 
stress sources, two of which )6,5()( =αΩ ii  are concentrated along the segment 1α<α , 

 and the rest four 0=β )4,1()( =βΩ ii  are concentrated along the segment eα−=α , 
π≤β . 
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Let 1,iX  and 0,iX  be the components of total and principal stressed-strained state of the 
shell, respectively, and )(iX  are the components of the perturbed one. Then, according to the 
superposition principle, 

0,)(1, iii XXX += ,                   (7) 

where 0,iX  is a particular solution to the problem on the stressed state of infinite shell 
without a crack under external load acting in the region eα<α , π≤β . This solution is 

assumed to be known. If the unknown densities )6,1( =Ω ii  satisfying the boundary 
conditions at the ends eα±=α   

)(),(),0( 0,)( β=βα−+β+α− ie
e

i
e

i XXX ,   4,1=i                  (8) 

and conditions (1) at the crack faces are found, the problem is solved. In conditions (8) ieX  
are the corresponding parameters of the stressed-strained state given at the end eα−=α . If 
conditions (8) are satisfied, the analogous conditions at the end eα=α  are satisfied as a 
consequence. 

If we substitute integral representation (6) into the boundary conditions (8) and (1), the 
system of six integral equations for determining the functions )6,1( =Ω ii  is obtained. 
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Here 
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)(zKij  are continuous functions. 

Numerical Algorithm for Solving the System of Singular Equations 
It should be noted that due to conditions (1), the right-hand sides of last two equations in the 
system (9) are discontinuous functions. Numerical experiment has shown that direct 
numerical methods for solving such equations give a significant error at discontinuity points. 
Therefore, by analogy with [8,9], the solution for function )6,5( =Ω ii  is sought in the 
form 

)()()( ttht iii Ψ+=Ω ,                 (10) 

where  is the solution of corresponding canonical singular integral equation with 
discontinuous right-hand side, which is found using the inversion formula for the Cauchy-
type integral. To find the functions  we obtain a system of integral equations 

)(thi

)(tiΨ
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It should be pointed out that the limits of integration in system (11) are unknown (the 
length of imaginary crack is unknown), and the right-hand sides contain the unknown force 

 and moment N M . To find the length of plastic zone the plasticity conditions for thin shells 
in terms of  and N M  are satisfied. For ideally elasto-plastic materials the Tresca condition 
in the form of plastic hinge will be used: 

1
2 2

2
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+⎟⎟
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⎛
σ TT h

M
h
N .                 (12) 

For materials with strengthening we utilize the same condition in the form 

[ ]*
010

* )/())(1()( mmPN +α−αα−α−=α  

[ ]*
010

* )/())(1()( mmHM +α−αα−α−=α                 (13) 

  10 α≤α≤α  

In relations (13) ;  are unknown constants, which have to satisfy the 
plasticity condition 

ТВm σσ= /* HP,

1)/()]2/([
*22* =+σ σhHhP , 

where 

ВВТ σ+α−αα−ασ−σ=ασ )/())(()( 010
* . 

In order to find the unknown  and N M  we utilize the finiteness conditions for forces and 
moments near the tips of imaginary crack. One need satisfy only the zero condition for the 
corresponding force and moment intensity factors, i.e. 

0== MN KK                   (14) 

The system (11) together with conditions (14) and (12) or (13) make a complete system of 
equations for finding the unknown jumps of displacements and rotation angels and their 
derivatives on the crack line and shell ends eα±=α  as well as unknown  values of , N M , 

 . Using the method of mechanical quadratures [10] and method of boundary elements, the 
system of integral equations (11) is reduced to a system of algebraic equations. The algorithm 

pl
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for its solution is as follows: in a certain way we set the value of  and solve a linear system 
of algebraic equations; using the conditions (14) we find  and 

pl
N M  and verify the condition 

(12) for the case of elasto-plastic material or the condition (13) for material with 
strengthening. If the plasticity condition is satisfied up to a preassigned accuracy, the problem 
is solved; if no, then  is changed and the procedure is repeated. pl

 

NUMERICAL RESULTS 
The crack opening at its arbitrary point is defined according to the formula 

11212 )],/([)]/([),( α<αααθγ+αα=γαδ u , 

 
                    FIGURE 2.                                              

 

Fig. 2 shows the surface crack opening 
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