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Introduction 
Fig.1. shows a model of a test configuration which has been studied extensively [e.g. 1] to 
observe dynamic crack growth along a weak interface between two dissimilar materials. Here 
we will restrict the analysis to strips of equal height, h , but having different elastic modulii 
E  and densities ρ . The loading is effected by impacting one arm with a projectile at a 
velocity  which propagates the crack of length  at a velocity . The stresses are 
predominantly uniaxial compression but the crack propagates in shear, or mode II. It has been 
observed that the propagation speeds are greater than a shear wave velocity of the system [1] 
and are sometimes referred to as intersonic. It has also been observed that very high 
accelerations occur during the initial phase of propagation. 
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An earlier paper [2], applied a global dynamic energy balance analysis to this problem and 
compared solutions with experimental data from [1]. This analysis is summarised here and 
then compared with a numerical finite volume analysis [3], which describes the crack growth 
via a Cohesive Zone Model (CZM), using only the shear traction-separation relation, i.e. pure 
mode II. 

 

Steady State Analysis 
The static energy release rate when the upper arm is loaded with a stress 1σ  is given by [2], 
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Note that for 1=β , a homogenous specimen, 8
1=χ  while for the case of 1>>β , a stiff 

lower arm, 1→χ . For polymer-metal systems 6020 −≈β  and χ  is in the range . 8.06.0 −
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If the crack is moving at a constant velocity  then for a loading velocity V  the strain in 
the upper, loaded, section becomes, 
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It should be noted that the steady state assumption is that the end deflection is Vt  and the 
crack length is  which will be true only at long times. ta0&

In the dynamic case there is change in kinetic energy given by [2], 
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The dynamic G  is, 
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Ca&  is the characteristic wave speed for the interface and is a function of the wave speed in 
each arm,  and . For polymer metal systems 1c 2c φ  is in the same range, , as 8.06.0 − χ . 



ECF15 

Note that for very low  or very high V  values . For polymer-metal combinations 
 m/s. 

0G Caa && →0

1600~Ca&

 

Transient Crack Growth 
The steady state solution is not valid at initiation since 0=a&  at that time. A solution to 
describe this behaviour may be found [2] by considering a perturbation from the steady state, 
p , such that, 

 
 ptaa += 0&&

and imposing the fixed dynamic ; , as before. The equation of motion for G 0G p  becomes, 
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which has a solution of the form, 

 

εitp ±⋅= 2
1

const    ,   18
2
1

2

0

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

a
aC

&

&
ε . 

This has a real part of; 
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where 
0t

t=τ  and  is the initiation time. The constants  and  are determined from 

the boundary conditions , 

0t 1B 2B

0tt = 0ap &−=  and 0=p&&  for which 
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at &=  and  is the initial 

crack length. The crack growth functions become; 
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For short times ( ) 3
2

0aaa −∝&  and the maximum acceleration is approximately when 

3
2ln =τ , i.e. 2≈τ ; i.e. 

0

2

max 24.0
a
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The Numerical Model  
A Finite Volume method is developed for the simulation of the transient shear crack problem. 
Global material behavior is approximated as linear elastic while a Cohesive Zone Model 
(CZM) is employed to define the local non-linear separation process. The main properties of 
the method are its simplicity, conservativeness and efficiency. The simplicity stems from the 
fact that the method uses the original integral linear-momentum conservation law as the basis 
for discretisation. The conservative character of the procedure is preserved both globally and 
locally, which leads to physically meaningful and accurate results even when very small 
number of computational cells are employed. The segregated, iterative solution algorithm 
results in low memory requirements and is directly applicable to non-linear problems. 
However, due to the iterative treatment of the inter-equation coupling, the solution procedure 
may result in increased CPU time, particularly for problems involving bending. 

The method has been successfully applied to various fracture problems, and more recently 
for predicting branching in PMMA specimens [3]. This is the only work where good 
quantitative agreement is obtained between experiments and numerical predictions of 
dynamic, multiple crack branching by using initially rigid traction-separation laws. The use 
of the same in the Finite Element procedures does not result in branching. The explanation to 
this may be found in the facts that FV uses implicit time differencing, while the tractions 
equilibrium is considered on the cell faces and not in an average volume sense as would be 
the case with standard FE procedures. This is particularly important when using CZM, since 
cohesive tractions act on the cell (element) faces. 

Comparisons  
The numerical simulation of the shear crack propagation was conducted for the case with 
χ =1, i.e. the lower part of the bi-material strip was assumed rigid (Fig. 1). The top part of 
the specimen is considered to be linear elastic with the following properties: E = 1 GPa, ν = 
0.3 and ρ = 1000 kg/m3. The solution domain and the boundary conditions used in the 
analysis are shown in Figure 4. The domain is discretised with 100 x 10 computational cells 
or control volumes (CV) in longitudinal and transverse directions, respectively. Plane stress 
conditions are used in the analysis. The time step is chosen such that the Courant number is 
equal to 1.  

 

Consider traction t acting at a point on the crack boundary. For given geometry and 
boundary conditions, it is reasonable to assume that 

 
 (8) t ⋅ i1  and  t ⋅ i3 <<   t ⋅ i2

where  are unit vectors in the normal and two tangential directions, respectively 
(Fig. 4). For simplicity, the small traction components in normal direction 1 and tangential 
direction 3 are therefore neglected, and only the shear (mode II) component is considered. 
The shear cohesive law is assumed to be of Dugdale form with the cohesive strength of 100 
MPa and fracture resistance of 1 kJ/m

i1,  i2 and i3

2.  
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The numerical results and comparison with the analytical solution are to follow. 
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Fig 1: Bi-material Strip in Shear Loading.  
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Fig 2: Variations of velocity with time, 
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0t  is initiation time. 
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Fig 3: Variations of acceleration with time. Stable as   as  . 0→a&& ∞→t
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Fig 4: Solution domain and boundary conditions 

 

  


