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Abstract 
In the paper the influence of the in- and out-of-plane constraint on fracture toughness was 
analyzed theoretically and experimentally. It was assumed that the Q stress is a measure of 
in-plane constraint and Guo’s Tz function is a measure of out-of-plane constraint. The general 
formula was proposed to compute the fracture toughness when two or more fracture 
mechanisms are active in parallel and they are represented by their individual fracture 
toughness’. The simple, analytical formulas were derived to compute fracture toughness’ for 
different fracture mechanisms acting individually. They are functions of three parameters: 
JIC, Q, Tm. Experimental program was carried out to measure fracture toughness of the 
specimen, Jc. 2D and 3D FE analysis was performed to compute all necessary quantities. 
Theoretical models proved to be correct when compared with the experimental results for 
tested materials. 

Introduction 
Due to the high geometrical constraint the fracture toughness measured in the laboratory, 
according to national or international standards assumes values among the lowest for variety 
of other geometrical configurations. Therefore, structural integrity assessment procedures 
using the KIC or JIC or similar toughness measures provide, by definition, conservative results. 
It is, in principle, correct approach leading to “save” decisions.  

However, safety although the most important requirement imposed on structural integrity 
assessment procedures, is not a unique one. The structure should be not only safe but cheap 
as well. It turns out, that for structures without high constraint in front of crack the fracture 
toughness can be several times higher than for specimens with high constraint.  

In practice, it is not possible to measure fracture toughness for all structures (different 
shapes and sizes) made of given material. However, if one could define some measures of 
constraint (in-plane and out-of plane) computable for different geometries, these measures 
could be used to propose the physically based formulas defining fracture toughness for 
arbitrary component.  

1. In-plane and out-of-plane constraints measures 
1.1. In plane constraint. 
For the Ramberg-Osgood (R-O) material the second term of asymptotic expansion of the 
stress field weakly depends on the distance from the crack tip. O’Dowd and Shih [1] 
proposed the simplified, two-terms formula for the stress field in front of the crack, in the form: 
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where εo=σo/E, n is R-O exponent, In is function of n computed for plane strain or plane stress [2]. 

The Q stress strongly depends on the shape and size of specimen as well as on external 
loading. It depends also on n and for many cases is considerably different from zero (usually 
is negative). Thus, the Q stress strongly influences the level of hydrostatic stresses in front of 
the crack tip. In turn, fracture mechanisms and plastic deformation depend on hydrostatic 
stresses. One may expect that Q stress can be a good measure of the in-plane constraint.  

1.2. Out-of-plane constraint 
Guo extended the HRR analysis in a series of papers [3, 4, 5] to the three-dimensional case 
(3D). In fact, he showed that the HRR singularity can be proven for the plane strain and plane 
stress only and in 3D case simplified, approximate formula in the form of Eq. (2) (without the 
second term) in which the thickness effect entered final result through functions In(n,Tz) and 

),,( zij Tn θσ  . Tz(n,r,x3)  function is defined as follows: 
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When through-the-thickness average of Tz, Tm is computed the thickness of the element, B 
enters all important stress and strain characteristics. Importance of this function was 
demonstrated when it was applied to modify Dugdale model for arbitrary specimen thickness 
[6]. Similarly to the Q stress the Tz function can be computed numerically by finite element 
method or using approximate relations [5].  

2. Fracture mechanisms and fracture toughness 
Fracture toughness measured experimentally according to appropriate standards depends on 
dominating fracture mechanisms at or just after onset of crack growth♣ and on extent of 
plastic deformation. In this paper fracture during monotonous loading will be discussed. In 
such a case brittle fracture usually take place according to cleavage, transgranular fracture 
mechanism. Ductile fracture is due to voids nucleation-growth-coalescence (VNGC) 
processes or/and slip along slip facets in two different domains: central part of the specimen 
in front of the crack and along shear lips. Very often fracture process is a result of more than 
one fracture mechanism. They can act simultaneously (in parallel) or can follow each other 
(in series). Usually ductile and cleavage mechanisms do not occur together along crack front. 
The reason is that cleavage mechanism is stress controlled and take place at very low, if any, 
plastic deformation. Ductile mechanisms require both high stresses and plastic strains 
(VNGC) or high plastic strains (slip along slip facets). Ductile fracture mechanisms can occur 
simultaneously and they do it very often.  

In this paper we will postulate that resultant fracture toughness should be computed 
according to two different schemes: 

• one fracture mechanism occurs at or just after onset of crack growth,  

• two or more fracture mechanisms occur simultaneously at or just after the onset of crack growth 

Former case is observed when cleavage mechanism takes place. The fracture is either by 
cleavage only or by ductile – cleavage sequence of mechanisms. The scheme depends on 
actual individual value of fracture toughness associated with cleavage or ductile fracture 
mechanism considered separately.  

                                                 
♣ Usually fracture toughness is measured taking into account not only the onset of crack growth (which is 
difficult to be detected) but some small stable crack growth also (JR curve technique or 95% secant line). 
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During ductile fracture different fracture mechanisms can take place at the same time. 
Examination of fractured specimen surfaces shows that voids are formed along shear lips and 
in the central part of the specimen. However, shape of cavities in these both domains is 
different. Along shear lips cavities are elongated, of parabolic shape. Their growth is due to 
the shearing plastic strain. Shear lips are located near the specimen surfaces in the region 
dominated by plane stress. In the centre of specimen the shape of cavities is more circular. 
Plastic strain and hydrostatic stress control their growth. Plane strain or 3D stress and strain 
dominate this domain. We will assume that fracture mechanisms along shear lips and in the 
central part of specimen are different and they will be modelled separately. The fracture 
toughness due to ductile fracture in a central part of specimen will be denoted by  
(VNGC process). The fracture toughness due to mechanisms occurring along shear lips will 
be denoted by .  The resultant fracture toughness when two or more mechanisms occur 
simultaneously will be computed using “electrical” analogy concerning electrical resistance 
for two or more resistors connected in parallel. 
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where Jc is resultant fracture toughness, A=Av+As is part of the fractured surface: 
A=∆aB=(a1-ao)B=0.1b0B, bo is length of unfractured ligament in front of the crack, B is 
specimen thickness, ao is initial crack length, a1 is the length of crack after stable crack 
extension over the distance 0.1bo, As is part of A- it is the area occupied by shear lips, Av is 
part of A occupying central part of selected fractured surface. Crack growth extension equal 
to 0.1bo was assumed since the value of measured JIC  (from the JR curve) depends on this 
distance. Areas A, Av,As can be easily measured from the fractured surface.  

In order to compute resultant fracture toughness of structural element Jc(JIC,Q,Tm) when 
more than one fracture mechanism occur simultaneously one should compute fracture 
toughness characteristic for individual fracture mechanisms. 

3. Cleavage fracture toughness of structural components 
Cleavage, transgranular fracture process is controlled by hoop stress in front of the crack. 
Since plastic deformations are small, the HRR field (small strains) corrected by the O’Dowd 
[1] Q stress is a good approximation of “real” stresses in this domain (Eq.(2)). We adopt 
O’Dowd [7] approach proposing formula to compute fracture toughness. However, we extend 
his results to include the out-of-plane constraint. Thus, two-parameter approach (JIC, Q), will 
be replaced by three-parameter approach (JIC , Q, Tz). 

O’Dowd assumed [7] that fracture may occur when the hoop stresses reach critical value 
σc at certain distance rc in front of the crack tip. Assuming that value of JIC, measured 
according to standards (e.g. ASTM E 1737-96) was obtained for plane strain case (Tz=0.5) 
for high constraint specimen (Q=0) the critical stresses can be computed from the formula: 
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If specimen is still dominated by plane strain in front of the crack but the in-plane constraint is 
reduced (Q<0) Eq.(2) can be used, in which J is replaced by Jc, r by rc, σij and ijσ~ by σc and 22

~σ  
respectively. Eliminating from Eqs (2) and (6) rc the following formula for Jc can be reached: 
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In Eq.(7) JIC should be measured in a standard test, Q should be computed numerically, σc 
is unknown but it can be computed from the simple two tests.  

The HRR solution with the second term proposed by O’Dowd does not take into account 
the thickness effect, except distinction made between plane stress and plane strain. In turn 
Guo’s approximate 3D solution does not take into account in-plane constraint, represented by 
second, generalised term of asymptotic expansion.  

In view of above limitations in representing stress distribution in front of the crack along 
its edge the following simple, approximate model will be used in computations to follow. The 
scheme to include Tz function into fracture toughness of structural element approximation is 
shown in Fig. 1. 

Plain Stress, Tz=0 Plain Strain, Tz=0,5
Tz

 σi,j(r)

 σ(i,j)n

 σi,j(r)

 σ(i,j)o

Fig.1. Scheme used to include Tz into stress level approximation in front of the crack. 

Fig.1 summarises certain known facts as well as assumptions adopted in the process of the 
stress level approximation for cases which are neither dominated by plane strain nor by plane 
stress. If Tz=0 (plane stress domination) the stress level, nij )(σ , can be computed from Eq.(2) 
with In and ),(~ θσ nij functions adopted for plane stress. If Tz=0.5 (plane strain domination) the 
stress level oij )(σ can also be computed from Eq.(2) but with In and ),(~ θσ nij functions adopted 
for plane strain. For 0<Tz<0.5 the stress level will be approximated by the power function: 
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In our model we will use an average value of Tz, Tm along the crack front. We will 
compute it numerically using FE analysis. In all cases Tm will be computed at the distance 
r=2J/σo from the crack edge.  

Exponent α1 should be selected to adjust numerically computed opening stress 
distribution to postulated distribution according to Eq.(8). However, in order to perform fast 
structural integrity assessment the value of α1 can be assumed at the level assuring conservative 
results. For brittle or semi-brittle materials α1 should be selected to be smaller than 0.2. 
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Utilising O’Dowd hypothesis that at critical moment ccrr σθσ === ),0(22  along with 
Eqs (2,6 and 8), for two specimens: standard one (Q=0, Tz=0.5) and not suggested by 
standard (Q≠0 and Tz<0.5) and eliminating unknown distance rc one can obtain: 
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θσξ and subscripts n and o denote plane stress and plane 

strain respectively. In most practical cases Qn≅0. When Tz=0.5 Eq.(9) reduces to Eq.(7) 

4. Ductile fracture toughness of structural element due to voids nucleation-
growth-coalescence fracture mechanism 
We start from VNGC fracture mechanism. The physical nature of this process is totally 
different than for cleavage fracture. VNGC fracture mechanism is strain and stress controlled. 
Thus, an approach to assess the fracture toughness should be different. 

O’Dowd analysed the in-plane constraint influence on ductile fracture (due to VNGC 
mechanism) toughness of plane strain specimens [8]. He assumed that the process is strain 
controlled only and that at the critical moment the crack tip opening displacement (CTOD) 
reaches critical value, which is material property. He compared CTOD’s computed for 
standard plane strain specimen (Q=0, Tz=0.5) and for specimen for which Q≠0 and Tz=0.5. 
In result he obtained: 
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where dn is function of n only for high constraint specimens. Values of dn for plane strain or 
plane stress can be found in any fracture handbook. O’Dowd showed [8, 9] that dn is also a 
function of Q-stress when constraint is reduced. However, O’Dowd hypothesis seems to be at 
least not sufficient to explain experimental observation that fracture toughness increases 
considerably when specimen thickness is reduced. Moreover, Eq. (10) leads to wrong result if  
dn in denominator is replaced by dn computed for plane stress. Since (dn)n>(dn)o one would 
obtain smaller value of Jc for much thinner specimen. 

Our arguments to propose formula for Jc, which would include both in- and out-of-plane 
constraint, are based on analysis of VNGC fracture mechanisms. Crack grows by coalescence 
with the row of the nearest voids. We assume that, at critical moment, the diameter of void in 
the cell next to the crack tip is for given material independent of specimen geometry. One can 
easily integrate McClintock or Rice and Tracy formula to find the radius of void. This 
radiuses can be compared for two different stress fields in front of the crack, which are 
characteristic for different constraint. One stress field is characteristic for standard specimen 
(Tz=0.5, Q=0) the second one reflects arbitrary Q≠0 and Tz<0.5. The strain within the cell 
was assumed to be proportional to CTOD. 
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where σm is hydrostatic stress in front of the crack, σm=(σ11+ σ22+ σ33)/3, = (1+Tz)( σ11+ 
σ22)/3; dn(n,Tz=0.5,Q=0) = (dn)o can be found in any fracture handbook. dn(n,Tz<0.5) can be 
computed according to Guo’s simplified solution [9]. However, it does not take into account 
the Q stresses. We propose simple approach here, which follows Guo’s results [5] and which 
is sufficiently accurate for structural integrity assessment. It turns out that  dn(n,Tz<0.5) is 
almost independent of Tz for Tz<0.4 and for this range is almost equal to (dn)n. Then it 
smoothly drops to (dn)o at Tz=0.5. Thus we propose: 
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where H(-) is Heaviside step function and β may be assumed, e.g. β=0.5 (the value of β does 
not have essential influence on final result obtained since Tm not often is grater than 0.4).  

In Eq.(11) one may notice identical term to that in Eq. (10) but multiplied by stress 
dependent function. Eq. (11) reflects experimentally observed fact that void’s grow is 
controlled both by stress and by strain. 

σm can be computed using Eqs (2) and (8): 
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Similar formula can be written (σ22(Q=0))o changing in Eq. (14) subscripts 11 for 22. For 
Tz<0.5 and Q≠0  we can write: 
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5. Ductile fracture toughness of structural element due to fracture along 
shear lips 
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The thinner specimen the greater shear lips widths with respect to the specimen thickness are 
observed. For sufficiently thin specimens the fractured surface does not contain flat part in 
between shear lips. In such a case fracture process does not depend on characteristic material 
length scale (e.g. distance between foreign particles) and depends on characteristic 
geometrical length scale – in this case, specimen thickness. Fracture mechanisms along shear 
lips are dominated by plastic shearing strain. Fractured surface along shear lips contains both 
cavities of elongated parabolic shape and slip facets. 

In order to use Eq.(5) we must define when fracture takes place along shear lips only. 
Assume that one can identify the onset of crack growth along the force, P, load point 
displacement, u, curve. In such a case the critical value of J integral can be, in principle, 
computed from the well known Rice’s formula: 

ds
cJ
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o
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η
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where η depends on specimen shape and size, E is energy of deformation represented by area 
under the P=P(u) curve at P=Pcr. E=Eel+Epl and Jc=Jc,pl+Jc,e. For some specimens (e.g. 
SEN(B)) Epl>>Eel and Eel can be neglected. In such a case one can assume: 

Epl=Vplζ=B2boζ (20) 

where Vpl is volume of plastic deformation domain, ζ is specific energy of shear lips 
formation, which includes processes of plastic deformation and shear lips formation. 
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Using the EPRI formula to eliminate the force at the critical moment one can finally reach the 
following formula for Jc

ds, which includes both elastic and plastic parts of energy. 
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where Po is limit load and h1(a/W,n) can be found in EPRI report [16] 

The unknown ζ, in the analysis to follow will be considered as adjustable parameter and will 
be selected to make theoretical and experimental results close each other. Nevertheless, ζ is 
assumed to be constant as in other papers concerning shear lips analysis [11, 12] 

For SEN(B) specimen =const. It will not depend on specimen thickness unless 

the thickness is equal or smaller than for purely shear lips fractured surface. Thus, will 
not depend on Tz, unless it can be shown that shear lips covers the whole fractured surface 
when Tz is still grater than zero. In such a case it can be shown that the formula 

is correct and in this paper we will use:  

ζηBJ ds
c =

ds
cJ

ζconstJ ds
c = ζη 0025.0=ds

cJ

6. Experimental program 
The main goal of experimental program was to evaluate fracture toughness of specimens that 
not follow the standard size limitations. The experimental program was performed on 
SEN(B) specimens. Width of the specimens W was 25mm. To break the size limitations four 
different specimen thickness: 4, 6, 12 and 16 mm were selected. For each thickness four different 
cracks length were machined and prefatigued. The a/W ratio values were: 0.15, 0.35, 0.5, 0.7. 
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Material used in program was steel 41Cr4 (5140 according to ASTM), which was subjected 
to two different heat treatments. Mechanical properties of this steel are presented in Table 2. 

 

 

 

Table 2. Mechanical properties of 41Cr4 steel. 

Heat treatment Mechanical properties Ramberg-Ogood 
parameters 

Material Label 
Temper Quench Re (MPa) Rm 

(MPa) 
Hardness 
(HRC) α n 

40H A 8500C 4500C 1170 1260 44 1 21 

40H B 8500C 6800C 700 820 29.5 1 16 
 
7. Numerical computations 
Numerical calculations were performed by finite element code ADINA 8.0 system. Material 
was assumed to be homogeneous with isotropic hardening and satisfying Huber-Mises-
Hencky yield criterion. The constitutive relation was assumed as in Eq. 24. 
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Stress fields required for Q-stress calculations was obtained using 2-D model with 
standard 9-nodes elements. 3-D model necessary to obtain Tz values was filled with 20-nodes 
elements. In-plane subdividing of elements was the same as in 2-D case. There were 6 layers 
in thickness direction. The crack tip was blunted by the radius equal to 10-5m which was 375-
1750 times smaller than crack length. The zone next to crack tip was modeled by 16 semi-
circles divided on 19 segments. Only one forth of specimen was modeled due to two 
symmetry axes. Both Tz and Q were computed at the distance 2J/σ0 from the crack tip. 

8. Results and analysis 
In Fig. 2 both experimental and predicted fracture toughness’ are presented. Experimental 
results are shown in the form of unfilled symbols and approximate curves. Computed fracture 
toughness is shown by filled symbols. They were computed according to presented scheme. 
Exponent α1 in Eq. (8) was assumed to be 0.1 and specific energy of shear lips formation ζ  
in Eq. (23) was assumed to be equal to 280 (material A) or to 300 (material B). This 
quantities require further theoretical and experimental evaluation. Computed and measured 
quantities are shown also in Table 3. 

In the case of material A one may notice a very good agreement between theoretical and 
measured fracture toughness. Differences do not exceed 10%. For material B maximum 
difference between computed and measured results is about 25%. 

The in-plane constraint strongly influence the fracture toughness. The shorter the crack is 
the higher values of toughness are observed. For less ductile material these differences are 
greater. For long cracks (a/W=0.7) the fracture toughness increases over the values measured 
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and computed for standard specimens. However it is likely that results computed for these 
specimens are influenced by the action of the contact region.  

Also thickness of the  specimen (the out of plane constraint) influences fracture toughness 
(up to 100% for short cracks and material B). The influence is much stronger for short cracks 
then for long cracks. For short cracks and material B fracture toughness decreases with 
specimen thickness. For a longer cracks it increases when specimen thickness decreases.  

For material A fracture toughness increases when specimen thickness decreases for all 
crack lengths. However for this material the influence of the specimen thickness on fracture 
toughness is much less then for material B. 

The experimental program and numerical computations were also performed for testing 
the cleavage fracture toughness on 3H13 steel – Polish Standard (X 30 Cr 13 – DIN; 420 S 45 
– BS) tempered 10500C and quenched 2500C). Good agreement between measured and 
computed (Eq. 9) results was observed. For cleavage fracture the out-of-plane constraint does 
not influences fracture toughness essentially. Results will be publish elsewhere because of a 
limited space in this article. 
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Fig. 2. Comparison of experimental and theoretical fracture toughness 

Table 3. Computed and measured fracture toughness values for 41Cr4 quenched at 4500C. 
(because of the limited space numerical results are included for one material only) 

 B=4 B=6 

ao/W Jc* exp  
kN/m 

Jc*  calc 
kN/m A1mm2 A2mm2 Q Tz Jc exp 

kN/m 
Jc calc 
kN/m A1mm2 A2mm2 Q Tz 

0.16 303 227 4.32 4.48 -0.86 0.11 299 248 7.69 4.91 -0.86 0.16 

0.35 200 194 3.58 2.85 -0.48 0.16 162 169 6.28 3.38 -0.38 0.22 

0.50 165 166 3.25 1.83 -0.28 0.18 143 149 5.37 2.19 -0.27 0.23 

0.70 128.3 135 2.23 0.82 -0.23 0.21 111 131 3.72 0.84 -0.23 0.26 

 B=12 B=16 

ao/W Jc exp Jc  calc A1mm2 A2mm2 Q Tz Jc exp Jc calc A1mm2 A2mm2 Q Tz 



ECF15 

0.16 266 272 20.84 4.36 -0.83 0.26 247 267 28 4 -0.82 0.29 

0.35 199 199 16.65 2.55 -0.4 0.27 155 154 23.12 2.48 -0.37 0.29 

0.50 136 124 13.01 1.87 -0.26 0.29 121 117 17.8 1.4 -0.25 0.30 

0.70 101 113 6.73 0.47 -0.23 0.30 117.6 110 8.88 0.72 -0.23 0.31 

* average value of 4-6 measurements obtained by drop potential and compliance method 
** A1 an area occupied by voids nucleation-growth-coalescence fracture mechanism, A2 an area occupied by 
fracture along shear lips mechanism, A1+A2=Bx0.1b 

References 
1. O’Dowd, N.P., Shih, C.F. “Family of crack-tip fields characterized by a triaxiality 

parameter–I. Structure of fields”, J. Mech. Phys. Solids, 39, 8, 989-1015, 1991 

2. Hutchinson, J.W., Singular Behaviour at the End of a Tensile Crack in a Hardening 
Material, Journal of the Mechanics and Physics of Solids, 16, pp.13-31, 1968 

3. Guo, W., “Elastoplastic three dimensional crack border field - I. Singular structure of the 
field”, Engineering Fracture Mechanics, 46, 1, 93-104, 1993 

4. Guo, W., “Elastoplastic three dimensional crack border field - II. Asymptotic solution for 
the field”, Engineering Fracture Mechanics, 46, 1, 105-13, 1993 

5. Guo, W., “Elasto-plastic three-dimensional crack border field - III. Fracture parameters, 
Engineering Fracture Mechanics, 51, 1, pp.51-71, 1995 

6. Neimitz, A., “Dugdale model modification due to the geometry induced plastic 
constraints”, Engineering Fracture Mechanics, 67, 251-61, 2000 

7. O’Dowd, N.P., Shih, C.F., “Family of Crack-Tip Fields Characterized by a Triaxiality 
Parameter – II. Fracture Applications”, J. Mech. Phys. Solids, 40, No. 5, pp. 939-963, 
1992 

8. O’Dowd, N.P. “Application of two parameter approaches in elastic-plastic fracture 
mechanics”, Engineering Fracture Mechanics, 52, 3, 445-465, 1995 

9. Gałkiewicz, J., Graba, M., „Algorytm wyznaczania funkcji ( )θσ ,~ nij , ( )θε ,~ nij , ( )θ,~ nui , ( )ndn , 
„  w rozwiązaniu HRR i jego 3d uogólnieniu, materiały konferencyjne IX Krajowej 
Konferencji Mechaniki Pękania, Kielce 2003, 

( )nIn

10. Kumar, V., German, M.D., Shih, C.F., An Engineering Approach for Elastic-Plastic 
Fracture Analysis, EPRI Report NP-1931, Electric Power Research Institute, Palo Alto, 
CA, 1981 

11. Cheung, S., Luxmoore, A.R., A Shear Lip Analysis of Concave R-Curve for an AlMgZn 
Alloy, International Journal of Fracture, 117, 195-205, 2002 

12. Green, G., Knott, J.K., “On Effects of Thickness on Ductile Crack Growth in Mild Steel”, 
Journal of the Mechanics and Physics of Solids, 23, 167-183, 1975 


