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Abstract
In the evaluation of accurate weight functions for the coefficients of first few terms of the 2D
linear elastic crack tip fields and the crack opening displacement (COD) using the finite
element method (FEM), singularities at the crack tip and the loading point need to be
properly considered. The crack tip singularity can be well captured by a hybrid crack element
(HCE), which directly predicts accurate coefficients of first few terms of the linear elastic
crack tip fields. A penalty function technique is introduced to handle the point load.
Numerical validation will be given.

1. Introduction
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loading conditions (see, e.g. Wu and Carlsson [1]; Fett and Munz [2]).
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In the development of the weight functions, a cracked body has to be analyzed under the
application of a point load. If the analytical solution is known for an infinite body with the
same loading configuration, the problem for a finite body can be decomposed into an infinite
cracked body under the point load, and a finite body with traction free crack faces subjected
to tractions on the external boundaries, which cancel out the tractions due to the analytical
solution for the infinite body (Xiao and Karihaloo [6]; Fett [8]). The simple boundary
collocation method (BCM) can then be used to the finite body with traction free crack faces.
However, this method is not accurate for shallow cracks and when the point load is close to
the external boundary, as has been shown by Xiao and Karihaloo [9].

The finite element method (FEM), despite its widespread use in the fracture mechanics, is
not of direct practical use in the evaluation of weight functions. This is because various crack
lengths and different locations of the point load need to be considered, and the crack tip
region as well as the neighbourhood of the point load because of stress singularities need to
be carefully refined to obtain satisfactory accuracy.
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For 2D linear elastic problems, the displacement and stress fields near the crack tip as well
as a point load are well known, and several methods for enhancing the FE approximations
with the known deformation information have been proposed. Xiao and Karihaloo [9]
reviewed briefly the merits and weaknesses of the recent developments with an emphasis on
their applicability to predicting higher order terms of the crack tip fields and/or modelling the
point load. The hybrid crack element (HCE) of Tong et al. [10] and Karihaloo and Xiao [11]
gives the most accurate first few terms of the crack tip field directly without a need for
refinement of the crack tip region. This element will be adopted in this study. For the point
load, the method for the evaluation of SIFs for cracks and generalized SIFs for re-entrant
corners proposed by Seweryn [12] has been improved using the penalty function (PF)
approach. This method enhances the FE approximation using the known displacement fields
corresponding to a point load and avoids the need for refinement of the mesh in the
neighbourhood of the point load. Numerical validation for the accuracy of this treatment of
the point load, as well as the coefficients of the crack tip fields and the COD due to wedge
forces on the crack faces obtained using the proposed method will be given.
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If the crack with traction free faces lies on the negative x-axis, and the polar coordinates
centred at the crack tip are designated r and ϑ (ϑ is measured counterclockwise from the
positive x-axis, Fig. 1a), the displacements and stresses near the tip of the crack subjected to
splitting load (mode I) can be expressed as the so-called Williams expansions (see, e.g. [11]):
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For the semi-infinite crack in an infinite plate subjected to a pair of wedge forces, P,
acting at (-s, 0) (Fig. 1b), the stresses along the extension of the crack line can be written in
the form of (3–5) with the coefficients of the first five terms as [6]
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The corresponding COD at the location t on the crack face is
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where [[ =′  for plane stress, and $�@� \ν−=′ 

  for plane strain. The coefficients ]A� , ^A� ,

…, _A� , and the COD ( )`acbd
δ  for the geometry of Fig. 1b have been distinguished by the

symbol ‘∧’.

For the FSECP with traction free crack faces (Fig. 1c), the general solution can be
expressed in the Williams expansion (1–5). The coefficients ( )����e -  in (1-5) for this
geometry are to be determined by meeting the traction free exterior boundary conditions of
Fig. 1a. The corresponding COD at the location t on the crack face is

( )f−+−
′

==−=δ π=ϑ=π−=ϑ=π=ϑ= BggBCChiii jjj
klmnopj qGqGqGrssstqE uvuvuv (8)

Weight functions (P = 1) for coefficients an (1 ≤ n ≤ 5) and COD of the FSECP subjected
to wedge forces P (Fig. 1a) can be obtained by combining the relevant terms of the analytical
solution (6), (7) of Fig. 1b with the corresponding numerical solutions for Fig. 1c, i.e.

( ) ( ) ( )���������� www -- +=  (9)

( ) ( ) ( )xyz{yz|xyz }~~}~ δ+δ=δ (10)

Coefficients �� ��  of a specimen with characteristic size L1 are related to �� ��  of another
specimen with similar geometry and loading conditions but characteristic size L2 as

( ) ����� BB ��� ���� = (11)

From (7), (8) and (10), for an arbitrary factor k, the COD has the following property

( ) ( )���� �� �� ��
δ=δ ; ( ) ( )����� �� �� �� ���� δ=δ ; ( ) ( )��������� -�-� δ=δ  (12)
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In the coordinate system shown in Fig. 2, the displacements in the neighbourhood of the point
load are
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where A, B, and C are constants depending on the remote boundary conditions. The
corresponding stresses are

®
¯

° θ
π

−=σ ±�²´³
µ

, �=τ=σ θθ ¶ (14)

Since the strain energy is unbounded in the
neighbourhood of the point load, the above known
deformation fields (13) cannot be used to enrich the
FE approximation via most methods appropriate for
corners or crack tips. For example, if the partition of
unity method (PUM) is used, the entries in the
system stiffness matrix corresponding to the singular
fields above will be very large (akin to penalty
function terms). As a result the corresponding
coefficient P/(πE), if it is treated as an unknown
variable, will vanish. The results cannot be improved
even when the known amplitude P/(πE) is enforced
as a prescribed displacement. This has been confirmed by numerical results. These results
will, however, not be presented here for brevity. The DtN method, especially its extension by
Seweryn [12], seems most appropriate for point loads. A disadvantage of Seweryn’s method
is that all the nodes which enforce the known analytical solution have to be numbered
consecutively, i.e., as the first or final block of the nodes. A transformation to the system
stiffness matrix is required. After transformation, the total degrees of freedom of the system
will change. This complicates its practical implementation. It is improved as follows in the
present paper.

The set of unknowns of the discrete system (i.e. the nodal displacement vector) is
expanded to include the coefficients in the displacement fields (13) of the neighbourhood of a
point load. The amplitude P/(πE) in (13) is also treated as an unknown coefficient in the
beginning, and later enforced as a prescribed displacement. The displacement field (13) acts
as constraints on the displacements at nodes surrounding the loading point in the expanded
unknown displacement vector. These constraints are enforced through a PF approach, in a
similar manner to the enforcement of periodic boundary displacement conditions in a
homogenization problem (Karihaloo et al. [13]). Note that integration of singular integrands
is avoided as no singular functions are used explicitly in the FE formulation. In the
computations to follow, the first ring of nodes surrounding the loading point will be
considered, and a penalty factor of 103E will be used to guarantee convergence of numerical
solutions.

Since the PF method has been used, the discretized system of equations will be badly
scaled. We have used the HSL packages MC30 and MA57 to scale and solve the system.
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In order to check the accuracy of the implementation of the point load, a finite plate shown in
Fig. 3a subjected to a point load is analysed. The prescribed boundary displacements are in
the form of (13) with coefficients
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In the following, a WS specimen with W = 100mm, dn =
15mm, f = 30mm, and e = 35mm (Fig. 4) subjected to
wedge forces will be analyzed. The crack length to depth
ratio α = c/(W – dn) = 0.1 and s/c = 0.92 Only one half of
the specimen needs to be considered because of symmetry.
The load P is assumed to be 1 per unit thickness.

A 21-node HCE (the first 39 terms in (1-5) are
included in the element formulation) together with a
relatively fine discretisation of the remainder of the
body will be used. Three-point Gauss integration is used for each side (segment) of the HCE.
The PS element [14] is used in conjunction with the HCE, and the traction free conditions on
the exterior boundary are exactly satisfied using the special hybrid stress boundary element
HBE (Xiao et al. [15]). 2×2 and 3×3 Gauss quadratures are employed for the formulation of
PS and HBE, respectively. The FE mesh used in the computations is shown in Fig. 5a. The
coordinate system used is the same as that shown in Fig. 4. The HCE is symmetric about the
y-axis; it is rectangular with its length (in x-direction) twice that of its height (in y-direction).
The scaled coordinate axes are also included in Fig. 5a to show the location of the HCE
relative to the rest of the mesh. The mesh patterns surrounding the HCE and at the
neighbourhood of the point load are shown in Fig. 5b and 5c for clarity. The PF approach is
used to treat the loading point. In the computations Young's modulus E is set at 1, and
Poisson's ratio ν at 0.25. The units of loading (Fig. 4) are consistent with that of E. A state of
plane stress is considered with thickness assumed to be 1.

The specimen was also analyzed with refinement at the location of the point load, as
shown in Fig. 5d, and without using the PF approach. The results for the coefficients of the
first five terms are compared in Table 2; and the CODs are compared in Fig. 6. Their
excellent agreement confirms the high accuracy of the numerical results obtained above.
With the refined mesh, numerical results show that the coefficients an as well as the COD do
not change irrespective of whether or not the FE approximation is enriched with the PF
approach, since the results are highly accurate.
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The penalty function approach introduced in this
paper simplifies the practical implementation of the
method by Seweryn [12] without any loss of its
accuracy. This method gives highly accurate fields
at the neighbourhood of a point load without the
use of a very fine mesh. Using this method to
capture the elastic field of the point load and the
HCE to capture the elastic field of a crack tip, the
FEM becomes a powerful tool for the evaluation of
2D weight functions for the SIF, coefficients for
higher order terms and the COD.
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