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Abstract 
A macroscopically defined critical frontal process zone (CFPZ) size ahead of a crack tip is 
estimated for alumina ceramics, alumina-based nanocomposites, and porous alumina 
ceramics. A three-point flexure test is carried out systematically on alumina using flexural 
specimens with various depths of a sharp V-shaped notch. The relation between the flexural 
strength and the local fracture stress is clarified based on the Griffith criterion and the local 
fracture criterion, and the formula for the relation between the strength and the notch depth is 
successfully established.  

 

Introduction  
The aim of this paper is to propose an indirect technique for estimating a macroscopically 
defined critical frontal process zone (CFPZ) size using the SEVNB (single-edge V-notched 
beam) method [1,2] to clarify the toughening mechanism of ceramics. The relation between 
strength, fracture toughness, and CFPZ size of alumina ceramics, alumina-based 
nanocomposites, and porous materials is estimated based on the Griffith criterion [3] and the 
local fracture criterion [4] using the exact stress distribution around a crack tip.  

 

Theory 
Griffith-Irwin criterion 
The Griffith energy equilibrium states that a necessary condition for crack extension is that 
the energy needed to create a new fracture surface be supplied the released strain energy [1]. 
Accordingly, when the energy release rate, G = dU/da, equals the fracture energy rate 
required for crack growth, R = dW/da, crack growth can occur, where dU is the released 
strain energy during infinitesimal crack growth and dW is the increased fracture energy 
during the growth. For mode I loading, the energy equilibrium of crack growth in an infinite 
plate is expressed under the condition of small-scale yielding using the Irwin’s notation as [5] 
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where γI represents the mode I fracture energy per unit crack-surface area when the crack 
extends in its own direction, namely, the direction of the maximum energy release rate, KIC is 
the fracture toughness, E’ = E for plane stress condition and E’ = E/(1- ν2) for plane strain 
condition, E is Young’s modulus and ν is Poisson’s ratio. This equation is called the Griffith-
Irwin Criterion. The superior feature of the Griffith concept is that the equation for the energy 
equilibrium is composed of two discrete parts. The first part is the energy-release rate 
expressed on the left side of Eq. (1). The energy-release rate is independent on the nonlinear 
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stress state in the frontal process zone (FPZ) ahead of a crack tip. In other words, the energy 
release rate is precisely determined by the stress intensity factor that depends on only the 
conditions of the outer boundary such as the applied remote stress and the specimen 
geometry, as long as the condition of small-scale yielding is applicable. The second part is 
the fracture energy rate expressed on the right side of Eq. (1), which is directly related to the 
microstructure in the FPZ and the size of the FPZ, representing the crack resistance of the 
material that must be overcome for crack growth to occur, and should be a material constant. 
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FIGURE 1. Stress distributions around a crack tip. 

Local fracture criterion 
The local fracture criterion [4] states that a crack will propagate when the stress at the 
characteristic distance from the crack tip reaches the local fracture stress, σc, shown in Fig. 1.  

Figure 1 shows the stress distributions around a crack tip, where the solid curve indicates 
exact stress distribution under a critical stress state (KI = KIC) and the dotted curve is its stress 
intensity approximation called Irwin’s expression. It should be noted that if the characteristic 
distance from the crack tip is equal to the CFPZ size, the Griffith-Irwin criterion and the local 
fracture criterion become identical, which gives the following relation between the fracture 
toughness and the local fracture stress, under the small-scale yielding condition 
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where r0 represents the CFPZ size. The important point is that the local fracture criterion 
satisfies the Griffith energy equilibrium when the characteristic distance is equal to the CFPZ 
size. From Eq. (2), the CFPZ size is expressed as, 



ECF15 

           
2

0 2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

c

ICKr
σπ

  .                                                                                                  (3) 

Therefore, if we know the σc value, we can estimate the CFPZ size. 

     When linear fracture mechanics is not applicable, namely in the case of short crack length 
compared with the r0 value, the difference between the exact stress and the Irwin’s expression 
becomes large at the location of r0, as shown in Fig. 1. Then, we have to use the exact stress 
formula to assess the local fracture stress. The exact stress formula on the r-axis in an infinite 
plate with a crack of length, 2a, under a remote stress, σf, is expressed as [7] 
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The following relation is then derived based on the local fracture criterion 

          )( 0rFcfcc σσ =   ,                                                                                                     (5) 

where σfc is the critical remote stress (strength) of the center-cracked infinite plate. From Eq. 
(5), the following equation is derived: 
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This equation indicates the relation between the strength of the center-cracked infinite plate 
and the local fracture stress. 

 

Experimental Procedure and Results 
Flexure test for V-notched specimen 
We used a three-point flexure test called the SEVNB method [1,2] to estimate the local 
fracture stress and the CFPZ size. The material is polycrystalline alumina (99.5% pure with 
MgO as minor dopant, Japan Fine Ceramics Center), alumina-based nanocomposites 
(Al2O3/5wt%Ni, Al2O3/3vol%SiC) [8,9], and porous alumina [10]. The sharp V-shaped notch 
was machined carefully into the flexural specimens using a V-shaped diamond wheel. The 
root radius of the machined notch was less than 20 µm. The specimens were 3×4×40 mm3 in 
size. Three-point flexure tests were carried out on the specimens without the machined notch 
or with notches of various depths.  

Flexural strength vs. crack length 

Figure 2 shows the experimental results of the relation between the flexural strength and the 
equivalent crack length for alumina. The equivalent crack length in an infinite plate is used to 
remove the influence of the shape factor, Y, on the fracture strength of the notched specimen 
[11,12]. The stress intensity factor of the edge-cracked flexural specimen is expressed as 

          aYK I σ=   .                                                                                                      (7) 

The equivalent crack length is then calculated as 

aYae π

2

=   .                                                                                                       (8) 



ECF15 

10-2 10-1 100101

102

103

Alumina

Equivalent Crack Length ae / mm

Fr
ac

tu
re

 S
tr

en
gt

h 
σ f

c /
 M

Pa

σB

 
 
 
FIGURE 2. Experimental results of the flexural strength vs. equivalent crack length. 

In Fig. 2, the solid square (▓) indicates the flexural strength of the un-notched specimens, 
where the mean strength was 462±18.0 MPa with the shape factor of Weibull distribution, m 
= 28, and the scale factor, β = 471 MPa. The double-circles (⊚) indicate the strength of the 
notched specimens and the nominal notch length are 0.01, 0.02, 0.05, 0.1, 0.5, 1.0, and 1.5 
mm. The fracture toughness estimated from the data on the –1/2 gradient line is 3.72 MPam1/2 
using a least square approximation. 

 

Discussion 
Local fracture stress 
The maximum stress on the tensile surface of a rectangular shaped three-point flexural 
specimen is expressed as 
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Considering a flexural specimen with an edge crack, as shown in Fig. 3, the imagined remote 
flexural stress at the distance from the notch tip, r, is expressed as 
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The exact stress at r around an edge crack is then expressed as 
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The local fracture stress at r0 can be derived as 
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and the strength of the specimen with an artificial crack is expressed as 
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FIGURE 3. Exact stress distribution around an edge crack in a flexural specimen. 
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Because of the relation W >> 2r0, the following relation is derived from Eq. (13) 

           cfca
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This equation indicates that the local fracture stress, σc, is the flexural strength when the 
artificial crack length reduces to zero. However, the σc is not equal to the σB, where the σB is 
the flexural strength of the specimen with no artificial crack, because the σB depends on the 
maximum defect size intrinsically existing in the specimen. The size effect on the strength of 
the flexural specimen and the CFPZ size is able to explain the difference between the 
strengths σB and σc. 

    The effective volume of the three-point JIS type specimen is expressed as [13] 
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where V (=WBS, W: width of the specimen, B: thickness of the specimen, S: span length) is 
the effective volume of the flexural specimen. The V is calculated to be 3×30 mm2 for unit 
thickness (B = 1).  

The CFPZ size of alumina is 6.9 µm, details of which will be explained later. The FPZ of 
ceramics is considered an area enclosed by a contour of the principal stress. Thus the 
effective volume of the CFPZ, VFPZ, is roughly estimated to be 6.9×(2×6.9)×10-6 mm2 for unit 
thickness. In addition, the FPZ is considered to be an equi-biaxial stress state because the 
FPZ is composed of nano-cracks. Therefore, the ratio of the strength between the specimen 
under a uniform uni-axial stress state and the specimen under an equi-biaxial stress state can 
be expressed as [13] 
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where, S1 represents the strength of the specimen under a uni-axial stress, S2 is the strength 
under an equi-biaxial stress, µ is the stress ratio of the biaxial stresses. In the case of equiaxial 
stress state, µ = 1.  

The ratio of the local fracture stress and the three-point flexural strength is then calculated 
from the following equation: 
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Using m = 28 and σB =462 MPa, we obtain σc = 565 MPa. 

     Figure 4 shows the relation between the experimentally obtained flexural strength of un-
notched specimens (▓) and the local fracture stress (◆), where the dot-dashed curve indicates 
the calculated value of σfc from Eq. (6), assuming the CFPZ size to be 6.9 µm. The dotted 
curve is obtained using the σB instead of σc in Eq. (6). The experimentally obtained flexural 
strengths of the notched specimens indicated by the double-circles lie on the dot-dashed 
curve rather than on the dotted curve. 

Critical frontal process zone size  
The local fracture stress can be estimated for each notched specimen. The results are shown 
in Fig. 5. It should be noted that every local fracture stress of the notched specimen has the 
almost same value, where the CFPZ size is assumed 6.9 µm. This CFPZ size is not the actual 
FPZ size. The CFPZ size depends on the microstructure ahead of the crack tip, and the shape 
of the leading edge of the crack depends on the microstructure, such as grain size, grain 
boundary, defects, and dispersed particles. Then the CFPZ size varies place to place. 
Therefore, the CFPZ size estimated from Eq. (3) should be considered a macroscopically 
defined value, because the CFPZ size is calculated from the macroscopically defined values 
of the fracture toughness and the local fracture stress. The actual CFPZ size observed by a 
microscopy is quite small [14]. 

Fracture toughness vs. critical frontal process zone size 
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FIGURE 4. Experimentally obtained flexural strength of notched specimens,  
flexural strength of un-notched specimen, and local fracture stress. 
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From Eq. (2), the following relation between the strength and the fracture toughness is 
derived 

          2/1
002 rrK BcIC ⋅≈= σπσ                                                                                    (18) 

Figure 6 shows the relation between the fracture toughness and σB·r0
1/2 for several ceramics. 

The experimental data for these materials are summarized in Table 1. Figure 6 implies that 
improvement of the fracture toughness requires greater values of both the strength and the 
CFPZ size. 

Conclusions 
We presented the technique for estimating the critical frontal process zone (CFPZ) size for 
ceramics, using the single-edge V-notched beam (SEVNB) method. A three-point flexure test 
was conducted on alumina specimen with several depths of V-notch. The local fracture stress 
was analysed based on the Griffith energy criterion and the local fracture criterion. The 
macroscopically defined CFPZ size was estimated to be 6.9 µm for alumina. The relation 
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FIGURE 6. Relation between the fracture toughness and σB·r0
1/2  

of alumina-based materials. 
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FIGURE 5. Local fracture stresses at the CFPZ size of each notch depth. 
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between the strength and the notch depth was successfully established using the exact stress 
distribution around the crack tip. The relation among the fracture toughness, the strength, and 
the CFPZ size was derived as 

Table 1. Summary of the data. 
 

          

Specimen Strength
σ B  (MPa)

Fracture
toughness  KIC

(MPa・m1/ 2)

Critical FPZ
size  r0
(μ m)

σ B・r0
1/ 2

(MPa・m1/ 2)
Al2O3 462 3.72 6.9 1.21

Porous Al2O3 38.4 0.75 39.7 0.24
Al2O3/ 5wt%Ni 462 4.00 9.0 1.39

Al2O3/ 3vol%SiC 760 5.06 5.3 1.75  

            . 2/1
0rK BIC ⋅∝ σ

This equation suggests that both the strength and the CFPZ size must be increased to improve 
the fracture toughness of ceramics. Some experimental results for ceramics were 
demonstrated to show this relation. 
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