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Abstract

Fracture analysis of pipes with circumferential cracks is an important task felndiea&

break characteristic3 his paper presents elastic and elgslistic finite element solutions of
Jintegral for pipe containing cracks undpressure. This analysis is based on a three
dimensional nodinear finite element method with small strain theory. The effects of
different parameters were analysed such as: crack dimensions, loading and hardness
coefficient.

1. Introduction

Pressure \&sels and pressure piping used in refineries, chemical processing plants, water
treatment systems of boilers, low pressure storage tanks commonly used in process, pulp and
paper and electric power plants operate over a broad range of pressures anduies et
experience a variety of operating environmer$&hell, head, attachments, and piping are
some of the components that commonly f&ine of the most important common types of
failure is cracking [#4]. The study of the crack behaviour in thesesl& of structures is then

very important to predict the lifespan. Since Rice [5], The J integral is the most used criteria
for analysing the fracture behaviour of ductile materials and the J integral may be determined
analytically, numerically or expenentally . With the development of the power computing,

the finite element method gives with a very good accuracy the values of the J integral at the
crack front in for ductile materials. Several works interested to the pipe crack subjected to
tensile lad and bending [2]4 The aim of the present study is to analyse, by the finite
element method, the behaviour of segtiiptical pipe cracks under pressure for elastic and
elastiecplastic material by determining the J integral at the crack front. Theysaalere
performed for pipe with different radis-thickness ratio, and for various position

2. Geometrical and material models:

Let's consider a cylindrical surface with seatliptical surface crack. Two position of the
crack were studied (figl). The dimension of the crack is defined by the-teifyth ¢ and the
depth a. The material was selected to be power law hardening with an efdasitic
behaviour characterized by the Ramb@sgpgood stresstrain relationship:

n
£_9. O{i] 1)
g o O
o o o

Where: a is the Rambergsgood factor, n the power lavardening exponent,, is the yield
strain and,, is the yieldstress.

This material law is in effect a ndimear elastic law and can be applied to a power plastic
material under conditions giroportional loading (Deformation plasticity theory). This model
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employs a representation of the uniaxial (tensile) ss&am curve consisting of two parts:

an initial, linear response followed by a pure power law model. The model supports only a
smaltstrain formulation. The assumptions of purely proportional loading in the model are
guestionable at best when finite strains large rotations of material elements occur. Using an

effective stress «,) defined from the von Mises yieldinction and an effective strain (e)

defined from the PrandReuss relations, the total stress components in term of the total stain
components are given by :
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Where the effective stress and strare defined by:

Wide ranges of configuration parameters are considered. They are all combination of the
following ratios: crack surface length to thickness of the pipe a/t=0.4, 0.6, 0.7, 0.8, and 0.9;
crak surface length to depth a/c=0.25, 0.4, 0.6 and 0.8;

o

(A) Longitudinal Surface Crack (B) Transverse Surface Crack

FIGURE 1. Geometrical model: position A and B.
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90°

FIGURE 2. Elliptical surface of crack
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FIGURE 3.Typical mesh modeposition Aand B.

3. Finite Element analysis
3.1. Creation of Finite Element mesh:

The three dimensional 3D Finite Element mesh for the geometrical model were generated
using WARP3D code develogeat university of lllinois ¢-8]. The model consists of solid

brick elements of &iodes. In WARP3D the model is divided into three zones. In each region
node and element numbering is controlled by three indices in a systeragfienmaking it

easy to locate specific nodes and elements in the different parts of model. This simplifies the
definition of the boundary conditions and application of external loading.

The mesh in focused region is formed by ellipses and hyperbolas hyf gsaformal
mapping. The coordinates can be evaluated according to

X=B (p + 1/p) cose 3)
Y =B (p-1p)sing (4)

Where: B is scaling factor determined by the crack geometry as:

ﬂ - % [c? — g2
Thus, the sides of the elements coincide with constant values of eitiner (Fig.2). For
different conbinations of wide ranges, the WARP3D generate a mesh model that contains
between 3606 and 6385 nodes for 2891 and 52%@d@ hybrid brick elements. Fig show
typical mesh model for the two position of the crack.

3.2. J-Integral formulation

A local value of the mechanical energy release rate, denoted J(s), at each point s on a planar,
non growing crack front under general dynamic loading is given by:
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Where: W is the stressvork density per unit volume at®0; I' is a vanishing small
contour which lies in the principal normal plane at s, gnsl the unit vector normal t5 . P,
denotes the nesymmetric I PiolaKirchhoff stresstensor which is work conjugate to the
displacement gradient expressed on th@ tonfiguration.ou/oX;: the stressvork rate is
simply Pou/oX, per unit volume at=0. All field quantities are expressed in the local
orthogonal coordinate systerjy,z at locatiors on the crack front.

All proposed forms of path independent integrals for application in fracture mechanics
derive from EqQ.(6) by specialization of the loading and material behaWtmran and Shih
[10,11] have proven the local path @méndence of J on the actual shapk. of

The quantity J defined by Eq.(6) has no direct relationship to the form of théimear
strainstress fields, except for very limited circumstances. For gtess and plargtrain
conditions, with nonlinear elastic material response and sstain theory, J of Eq.(6)
simplifies to the welknown J integral due to Rice [5] that exhibit global path independence.

The role of J as a single parameter which characterizes the near tigsstssriields for
arbitrary loading. The stresgork density (W) per unit initial volume may be defined in
terms of the mechanical strains as:

)
W =|F|[(t0: dar; @)
0

Where |F| denotes the determinant of the deformation gradiefk/pX, t. denotes the
unrotated Cauchy stress and d is the unrotated rate of deformation tensor computed from
displacements gradients.

4. Result and discussions

Fig.4 shows the distrution of the dintegral along the crack front for elastic behaviour (n=1)
for different values of a/t and c/a=4. It can be seen that-thtegral increase with the
increase of a/t. The crack extenslead ahigher dissipation of energy. It can beakeen in
fig. 1 that the J integral is higher @0 . In this position, the radius of curvature is minimum.

The crack will propagates in the c¢ direction (longitudinal direction of the pipe).
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FIGURE 4.Distribution of the J integral along the crack front for n=1,
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FIGURE 5. Distribution of the J integral along the crack for n=1 and n=5
Position A.

Fig 5 presets a comparisonof the Jintegral distribution between a elastic (n=1)and
elastieplastic (n=5). It is noted that there is a same trending for elastic behaviour but the
value of the <ntegral of the elastiplastic behaviour are larger. In order to confirm this
conclusion, it is plotted in fig .6 the value of théntkgral ate = 0° as a function of the
applied for n=1 (elastic) and n=5 (elagpiastic). It is noted that for weak values of the
applied pressure there is not a great differencedsat the elastic J and elagpiastic J, and
for a higher values of the applied pressure the difference is some significant. One can explain
the difference by the fact that, for weak pressbegeis not a significant plastic work near
the crack front and thelastic J integral is appreciably equal to the plastic one.
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For highapplied (Fig.6) pressure the plastic work increase with the increase of the
pressure ad the plastic component of thategral increase toodwWich explain the high
difference of the elasticiditegral anl elastieplastic Jintegral athigh-applied pressure.
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FIGURE 6. Variation of the J integral for different pressure
Position A.

Fig. 7 illusratesa thedistribution of J integral for the two orientations of the cracks:
longitudinal and transversal cracks. It can be noted that longitudinal cracks present a high
values of the J integral compared with the transversal one, and fegrertie is important at
the extremities of the cracke€0°and ¢=90°). This behaviour can be explained by the fact

that a longitudinal crack is subjected to elevated stress, because the applied pressure is
normal to thecylinder surface. The mode | opening crack is than more important for a
longitudinal crack.
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FIGURE 7. Distribution of the J integral along the crack front for crack
Orientations A and B (n§, c/a=4).
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5. Conclusion

In this paper, three dimsional, elastic and elastpiastic, finite element analyses for two
orientations of cracks in pipe are studies. The following conclusions can be drawn from the
present analysis:

- The study of the variation of the J integral along the contour of the dragled that the
value is maximum for the smallest curvatures radius.

- The value of the J integral is larger as the a/t ratio increases.

- The value of the J integral J is larger for the elgststic behaviour compared with the
elastic one.

- The value othe J integral is monenportantfor the longitudinal cracks.
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