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Abstract 
The mechanisms behind the growth of a short edge crack, located within one grain, have been 
investigated in bcc iron under cyclic loading conditions. The crack grows by single shear 
along preferred slip planes due to emission and annihilation of discrete dislocations, leading 
to a zigzag crack shape. The model is a combination of a discrete dislocation formulation and 
a boundary element approach. All external boundaries including the crack are modelled by 
dislocation dipole elements and the local plasticity is modelled by discrete dislocations, 
allowed to move along preferred slip planes. An in penetrable grain boundary restricts the 
spread of plasticity. The model makes it possible to study the crack growth path, the crack 
shape and the development of the plastic zone in detail. It is shown that the grain orientation 
determines the precise crack path for a fixed slip system. 

 

Introduction 
For short cracks, when the plastic zone is significant in comparison with the crack length, 

linear elastic fracture mechanics can not be used and the well established methods to estimate 
the crack growth rate for a long crack, Paris’ law [1], can not be used. The growth of short 
cracks is driven by shear and is dominated by local plasticity. The growth is also strongly 
influenced by the microstructure of the material, grain orientation and grain size. This has 
been shown by numerous experimental investigations of events taking place during fatigue 
crack growth. Andersson and Persson [2], Suresh [3], Jono et al. [4] and Zhang [5] have 
performed microscopic studies showing that a fatigue crack grows by single shear along 
preferred slip planes. In order to be able to improve fatigue life estimates, especially for 
materials that spend a large portion of the total life before entering the Paris’ region, the 
growth of short fatigue cracks must be further understood.  

For low growth rates, it is important to account for the discrete dislocations within the 
material. Studies taking this into account have been performed by Riemelmoser et al. [6] and 
Riemelmoser and Pippan [7]. They have modelled the interaction between a long mode I 
crack subjected to cyclic loading and individual dislocations in the material. Bjerkén and 
Melin [8,9] have studied microstructurally short mode I fatigue cracks, where crack growth 
occurs due to dislocation emission and annihilation at the crack tip. The model is entirely 
based on a dislocation formulation. A similar method has been used by Uematsu et al [10]. to 
study the crack deflection behaviour in body centred cubic (bcc) iron. The stresses and 
displacements were calculated by superposition of two elastic fields, one describing the 
discrete dislocations and the other the crack itself.  

In this study a combination of a discrete dislocation formulation and a boundary element 
approach is used. The external boundary, including the crack itself, is modelled by 
dislocation dipole elements as suggested in [8], and the plasticity is modelled by discrete 
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dislocations situated along certain preferred slip planes. Here the method is used to study the 
quasi-static growth of a short edge crack. The crack is situated within one grain in a bcc 
material and is extending by single shear due to emission and annihilation of dislocations 
when subjected to cyclic loading under plane strain conditions. 

 

Problem formulation 
The quasi-static growth of a short edge crack located within one grain and subjected to 

fatigue loading has been investigated under plane strain conditions. The original crack is 
inclined an angle α, coinciding with a preferred slip direction, to the normal of the free edge 
and an external load yyσ ∞  is applied parallel to the edge, cf. Fig. 1. The applied load is varied 

between a maximum value, , and a minimum value, . It is assumed that the crack 
grows through single shear along preferred slip planes, indicated by dashed lines in Fig. 1. 
The slip planes within the grain are separated an angle β, depending on the orientation of the 
grain and the crystal lattice of the material. An in penetrable grain boundary is present at a 
certain distance in front of the original crack tip and is parallel to the free edge. 

yy maxσ ∞
 yy minσ ∞

 

 
FIGURE 1. Geometry of the short edge crack. 

 

At each instant the resolved shear stress is calculated along all slip planes where 
dislocations already exist or can be expected to nucleate, i.e. along the dashed lines in Fig. 1. 
When the resolved shear stress exceeds the nucleation stress τnuc at a certain distance rnuc 
from the crack tip or from a corner point of the crack, an edge dislocation pair will nucleate at 
rnuc. A dislocation pair consists of two dislocations of equal size but of opposite direction. 
When nucleated the dislocation with the positive Burgers vector moves along a slip plane 
inwards in the material as long as the resolved shear stress at the point were the dislocation is 
situated exceeds the critical resolved shear stress τcrit. τcrit is the lattice resistance to slip along 
the preferred slip plane in the material and is considered a material parameter. The 
dislocation with the negative Burgers vector annihilates at the crack surface and causes either 
a slip between the crack surfaces or the crack to open, depending on which slip plane it was 
nucleated on. The crack advances during the unloading part of the cycle as dislocations with 
positive Burgers vectors get close enough to the crack to be annihilated, assuming that no 
healing of the crack surface occurs. 
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The characteristics of the material in this study are those of pure iron with a bcc crystal 
structure. In a bcc material slip occurs along close packed 111  directions, cf. eg. Hull and 
Bacon [11]. In this study it is assumed that slip occurs in the close-packet (110) plane in the 
[-1 1 1] and [1 -1 1] directions. This results in two possible slip systems in 2-D, with two 
alternative angles β between the slip planes, β = 70.6° or β = 109.4°. 

The material is bcc-Fe with shear modulus µ = 80 GPa and Poisson’s ratio ν = 0.3, cf. eg. 
Askeland [12]. The size of the Burgers vector b = 0.25 nm and the critical resolved shear 
stress is τcrit = 40 MPa [8]. 

 

Modelling of the external boundary  
The external boundary, defined as the free edge together with the crack surfaces, is 

modelled by dislocation dipole elements in a boundary element approach, cf. [8]. Only plane 
problems will be addressed and therefore only edge dislocations are needed in the 
formulation. A dislocation dipole element consists of two climb dislocations with same 
magnitude of their Burgers vector but opposite direction and two glide dislocations with the 
same relation between their Burgers vectors. The dislocations are located at the end points of 
an element and the normal and shear stresses are calculated at the centre of the element.  

The stress field from a dislocation in a Cartesian coordinate system situated at the origin is 
calculated from Eq. (1), cf. Hills et al. [13], where bk are the Burgers vectors in the x and y 
direction and  are the influence functions governing the stresses at point (x,y). ( , )k
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The stress at an arbitrary point is calculated as the sum of the stress contribution from the 
external load and the stresses due the dislocations along the external boundary and eventual 
nucleated dislocations along the slip planes. The magnitude of the Burgers vector for the 
dislocations along the external boundary must be determined before the stress at an arbitrary 
point can be calculated. The normal and shear stresses along the external boundary must 
equal zero if the crack is open, which leads to an equilibrium equation from which the 
magnitudes of the Burgers vectors for the dislocations along the external boundary are 
determined. If parts of the crack are closed, the magnitude of the corresponding Burgers 
vector is put to zero. 

The resolved shear stress τslip is calculated at all possible nucleation sites and a dislocation 
pair is assumed to nucleate if τslip exceeds the nucleation stress τnuc. This leads to a condition 
for nucleation according to Eq. (2) where θ is the angle between the global x-axis and the slip 
plane, and σxx, σyy and σxy the stresses at the nucleation point in focus. 
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Crack growth by emission and annihilation of discrete dislocations 
Equation (1), giving the stress field from one dislocation, is not valid within the core 

radius of a dislocation, typically 1-5 Burgers vectors [11], and therefore the resolved shear 
stress by choice is calculated a distance of 6 Burgers vectors away from the crack. Because 
the complex geometry of the crack the nucleation stress must be recalculated at the beginning 
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of each new load cycle. The nucleation stress is defined as the stress at the nucleation point 
when the nucleated positive dislocation travels inwards in the material along the specific slip 
plane and the negative dislocation travels to the crack surface. The choice of nucleation stress 
is described in detail by Hansson and Melin [14]. 

At the beginning of the first loading cycle it is assumed that no dislocations within the 
material exist. During the loading part of the first cycle dislocation pairs will nucleate and 
form a plastic zone when the external load gets sufficiently high. The positive dislocations 
move along their respective slip plane as illustrated in Fig. 2.1. The negative dislocations are 
situated at the crack surface causing either a slip between the crack surfaces or the crack to 
open, depending from which slip plane it emanates. For every new dislocation pair nucleated, 
the shielding effect on the crack increases and the external load must be increased in order to 
nucleate further dislocation pairs. When the maximum load is reached, the load is reversed 
and the positive dislocations start to move closer to the crack if τcrit is reached in the reverse 
direction, illustrated in Fig. 2.2. When a positive dislocation reaches the crack surface it 
annihilates and the crack advances one Burgers vector along the corresponding slip direction. 
This growth process through annihilation continuous until minimum load is reached and the 
next load cycle starts. If the crack has formed a kink a new slip plane is activated at the 
position of the new crack tip as illustrated in Fig. 1. 

 
FIGURE 2. Schematic description of the first loading cycle during: 1. loading, 2. 

unloading. Only positive dislocations are shown. 

 

Numerical implementation 
The equilibrium positions of all positive dislocations, located along the different activated 

slip planes and forming the plastic zone, are found iteratively, cf. [8]. It is assumed that a 
dislocation moves a certain distance ∆r along its slip plane if the resolved shear stress 
exceeds the critical resolved shear stress. ∆r is calculated from Eq. (3), where C is a constant 
determining the movement of the dislocation. If C is too large the equilibrium location of the 
dislocations might not be found and if to low, the iterative process becomes uneconomical. At 
every load increment the equilibrium positions for the dislocations are found by this process 
and the resolved shear stress at all possible nucleation sites is compared to the nucleation 
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stress. The load is not allowed to increase until no further dislocation pairs are nucleated and 
the equilibrium positions for the positive dislocations are found. 

-slip crit

crit

r C
τ τ
τ

∆ =  (3) 

 

Results 
In this study the initial crack length is a0 = 2.5 µm and the distance to the grain boundary 

from the original crack tip position is 1.25 µm. From a previous study of the same geometry, 
with the external load varying between = 200 MPa and = 0, five different crack 
patterns for crack growth within one grain could be observed [14], cf. Fig. 3. All five crack 
path patterns were present in the case of β = 70.6°, but only two, corresponding to numbers 
3.4 and 3.5 in Fig. 3, in the case of β = 109.4°. In order to provoke the missing three crack 
paths 3.1-3.3 in Fig. 3 for β = 109.4°, the maximum load is increased in this study, whereas 
still the minimum load is = 0.  

yy maxσ ∞
 yy minσ ∞

 

yy minσ ∞
 

 
FIGURE 3. Crack growth patterns. 

 

For the first two crack paths, Figs. 3.1 and 3.2, the crack grows along the initial slip plane, 
with the difference that the crack in Fig 3.2 eventually starts to grow in a zigzag pattern. The 
crack in Fig 3.3 starts to grow along the lower slip plane but immediately forms a zigzag 
shape. In Fig. 4 the crack shapes after a number of cycles for two different initial crack angels 
α are shown. All measures are in Burgers vectors with a0 = 2.5 µm = 10000b. In Fig. 4.1, the 
initial crack angle α = 60° and the figure shows the shape after 10 load cycles. The crack path 
is in this case of the type in Fig. 3.3. For a larger initial crack angle, the crack initially grows 
along the upper slip plane. In Fig. 4.2 the initial crack angle α = 70°. The first part of the 
crack path, when the crack only grows along the upper slip plane, lasts for around 600 cycles 
where after the zigzag part is created during 10 cycles only. 

 At increasing value of α, eventually a situation at which the crack is prevented from 
growing is reached. This is due to the low resolved shear stress along the slip planes 
emanating from the crack tip at large angles α. In order to provoke the crack path in Fig. 3.1, 
no dislocations are allowed to nucleate along the lower slip plane because they will 
eventually be annihilated as the crack approaches the grain boundary, resulting in a change of 
crack growth direction and a crack path as in Fig. 3.2 would result.  If the crack is growing, 
due to the high value of β, β = 109.4°, some dislocations will always eventually nucleate 
along the lower slip plane, independent of choice of α. Therefore the crack path in Fig. 3.1 
can never be obtained, irrespective of choice of α and maximum value of external load. 
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FIGURE 4. Crack shapes. All lengths are expressed in Burgers vector and the figures are 

not drawn to scale. The initial crack length a0 = 2.5 µm = 10000b. 

 

The crack growth rate, da/dN, where a is the crack length and N the number of cycles, for 
the cases in Fig. 4 are shown in Fig. 5 versus a . In Figs. 5.1 and 5.2 α = 70° and 
corresponds to the crack path in Fig. 4.2. The growth rate increases as the crack gets longer 
while growing along the upper slip plane. When entering the zigzag part of the crack path, the 
growth rates changes dramatically between the different cycles. Similar behaviour is seen in 
the case of α = 60°, cf. Fig. 4.1 and Fig. 5.3. The decreases in growth rates in Figs. 5.2 and 
5.3 are obtained in the cycles just before the crack is about to change its growth direction. 
The highest values correspond to the loading cycles just after the crack has changed its 
growth direction. 

 
FIGURE 5. Crack growth rates as functions of crack length. Crack length and crack 

growth rates expressed in terms of Burgers vector, b.  
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The calculations also make it possible to monitor the development of the plastic zone, i.e. 
the dislocation distribution, during the cycles. In Fig. 6, the dislocation distributions during 
the 10th cycle at three different load levels for the case of initial crack angle α = 60°, Fig. 4.1, 
are shown. The dislocations have different markings depending on at which slip plane they 
are situated according to Fig. 6.3. At maximum load, in this case yy maxσ ∞

 = 280 MPa, a large 
number of dislocations are positioned along four different slip planes, cf. Fig. 6.1. When the 
load is decreased the dislocations move closer to the crack and some of them will eventually 
get annihilated at the crack surfaces. In Fig. 6.2 the external load is 40 MPa and 9 
dislocations have been annihilated from the upper slip plane emanating from the crack tip, 
and it is clearly seen that the dislocations are more spread out over the slip planes. At 
minimum load, cf. Fig. 6.3, all dislocations along the upper slip plane and 1 dislocation from 
the lower slip plane emanating from the crack tip have been annihilated. The crack 
consequently grows a distance of 13 Burgers vectors in the direction of the upper slip plane 
and 1 Burgers vector along the lower slip plane, resulting in a new crack path direction in the 
cycle to follow. 

 
FIGURE 6. Dislocation distribution during the 10th cycle at external load equal to:            

1. 280 MPa, 2. 40 MPa, 3. 0 MPa 

 

Conclusions 
Growth of a short edge crack within one grain of bcc iron subjected to fatigue loading has 

been modelled using a dislocation technique. 

The formulation used in this study makes it possible to quantify zigzag crack paths 
emerging at crack growth through single shear. The development of the plastic zone can be 
studied in detail over the load cycles. It was found that it is the initial crack angle that 
determines the resulting crack path for a specific slip system subjected to fatigue loading. It 
was also found that change of the crack growth direction always resulted at growth in the slip 
system with angle between the slip planes β = 109.4°.  
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From the crack growth rate curves it was seen that the growth rate changes dramatically 
between different cycles during the zigzag formation of the crack path, whereas the curves 
are smooth as long as the crack extends straight forward. A general observation is that the 
growth rate decreases just before the crack changes its growth direction and that the growth 
rate is high in the cycles following directly after a change in growth direction 
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