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Abstract 
Fracture mechanics of linear elastic materials is generally based on the K field which has 
been derived for isotropic materials. Many applications require the use of advanced 
materials, which are often anisotropic and thus the isotropic elastic K-field is not 
applicable. In this work, a sharp crack lying in a homogenous, anisotropic material with 
cubic symmetry is studied and crack tip stress fields are presented. It is shown that the 
crack tip fields depend on material properties through the anisotropy factor, ρ. The stress 
fields are applicable for both plane stress and plane strain conditions, though the definition 
of ρ is different in each case. The theoretical K field obtained has been compared to results 
from finite element studies and excellent agreement has been obtained. 

 

Introduction 
The majority of solutions for crack tip fields address the problem of a crack within an 
isotropic material and are based on the isotropic K-field [1]. In this work, crack tip fields 
for materials with cubic symmetry only are examined. The motivation for the work arises 
from the increasing use of single crystal nickel alloys (which have elastic cubic symmetry) 
in gas turbine blades.  

In [2], Sih et al. investigated the stress fields in the vicinity of a sharp crack lying within 
an anisotropic solid. Following the approach presented in [3] the elastic crack tip fields 
were obtained and it was shown that the square root crack tip singularity is present in the 
anisotropic case. More recently, stress fields for interface cracks in linear elastic 
anisotropic bimaterials have been examined in [4], [5]. Fourier transforms were used in [4], 
[5] to obtain the full crack tip fields of a finite crack lying along the interface between 
anisotropic elastic media. More recently, crack tip fields around kinked cracks in 
anisotropic elastic solids were obtained [6], [7]. In [6], the Stroh formalism is used to 
derive crack tip fields, in anisotropic elastic solids, including elastic T-stresses and other 
coefficients of the higher-order terms. Numerical results for various kink angles and mode 
mixities, were presented. The problem of an inclined crack in an orthotropic medium was 
studied in [8] and fully analytical solutions for crack tip fields in orthotropic materials have 
been obtained using complex potentials.  

One of the drawbacks of these earlier works is that the precise form of the crack tip 
stress distributions has not been provided, so analytical studies of cracks in anisotropic 
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materials cannot be based directly on these works. Here, our attention is directed to 
anisotropic materials with cubic symmetry. The approach adopted in [2] is used to 
determine the stress fields in the vicinity of a sharp crack in such a material. Solutions are 
provided for Mode I loading. The semi-analytical results are compared to those obtained 
from a finite element analysis of a crack in an infinite plate under tensile loading. 

 

Crack Tip Stress Fields 
The generalised Hooke's law for anisotropic materials can be expressed as:  

klijklij S σε = ,  klijklij C εσ = ,   (1) 

where εij and σij are the coefficients of  the stress and strain tensors respectively and  Siklj 
and  Cijkl are the coefficients of the fourth order tensors (the compliance and stiffness 
matrix respectively) which contain the material constants for an elastic body. A material 
with cubic symmetry has four-fold rotational symmetry. For such a material there are three 
independent material properties and Eq. 1 has the following matrix form: 
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Here, axes are designated as [100], [010] and [001] corresponding to x, y and z. In Eq. 
(3), E[001] represents the tensile modulus in the [001] direction for the cubic material, G[001] 
the shear modulus in the [001] direction and ν is the ratio between normal, ε11, and 
transverse strain, ε22 (Poisson’s ratio). 

The plane problem for an infinitely sharp crack is illustrated in Fig. 1. Assuming that stress 
gradients in the out of plane (z) direction are negligible, the out of plane shear stress, σxz 

and σyz are zero and the stresses depend only on x and y. For the plane stress/plane strain 
problem examined here, Eq. (2) can then be rewritten as, 
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where γxy = 2εxy and 
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FIGURE 1. Plane crack problem. 

 

The general anisotropic problem in two dimensions has been studied in [9]. Here, we 
specialise to the case of materials having cubic symmetry. As discussed in [10], the 
governing differential equation for the plane problem of a cubic material can be written in 
terms of a stress function, U(x, y), such that, 
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The characteristic equation of the differential equation, Eq. (6), is then  
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and the problem reduces to finding the roots of Eq. 7. Substituting the values of sij from 
Eq. 3 and leaving out the subscript [001] for simplicity, one obtains for a cubic material 
under plane stress conditions, 
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By introducing a factor ρ  [12], 
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and defining sij as in Eq. 5, Eq. 8 can be written for plane stress or plane strain as, 

01)2( 24 =++ µρµ .     (10) 

Equation 10 has four distinct complex roots, which may be written as, 
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,111 iyxu +=   ,222 iyxu +=  ,13 uu =  24 uu =  (11) 

where iu  indicates the conjugate of . iu

Having determined the roots of the characteristic equation, crack tip stresses may be 
determined for Mode I loading (following [9]) as, 
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In Eqs. 13, Re represents the real part of the complex number and KI is the stress 
intensity factor under Mode I loading. It is seen in Eqs. 12 that a square root singularity is 
still present for the case of a cubic anisotropic elastic body. However, the angular functions 
in Eqs. 12 depend on the material properties through the characteristic equation, Eq.  10. 

The angular functions in Eqs. 12 cannot be plotted directly as they depend implicitly on 
ρ through Eq. 10. Therefore, the characteristic equation, Eq. 10, is first solved analytically 
for a given value of ρ and the Real parts of the solution in Eq. 12 determined numerically 
(in this work the software package Mathematica [11] was used for this purpose). In this 
way, a semi-analytical solution for the crack tip fields is obtained. Note that the angular 
distribution is the same for plane stress and strain, though the value of ρ will depend on 
whether plane stress or plane strain conditions are assumed.  

 

RESULTS 
The angular distributions for Mode I loading are shown in Fig. 2 as a function of the 

crack tip angle θ. Finite element (FE) solutions are also provided in this figure, which will 
be discussed in the next section. Results are provided for ρ values varying from –0.5 to 1.0. 
It can be seen in Fig. 2(b) and (c) that the hoop and shear stress, θθσ  and θσ r , are 
relatively independent of the anisotropy parameter ρ, in contrast to rrσ  which is strongly 
dependent on ρ as shown in Fig. 2(a) (Tabulated solution for various values of ρ and for 
Mode I and Mode II are given in [10]). 

For the isotropic case, corresponding to ρ = 1, Eq. 10 has equal roots and the solution 
obtained from Eqs. 10 and 12 oscillates. Therefore, the dotted line for ρ = 1 in Fig. 2 
represents the isotropic Mode I K-field [1]. (Note that for ρ = 0.999 there was no 
oscillation of the semi-analytical solution and the result is indistinguishable from the 
isotropic K-field.) 



ECF15 

 
FIGURE 2. Analytical solution (lines) and finite element solution (symbols) for angular 

functions of a cubic material under mode I loading. 

Using Eqs. 10 and 12, the angular variation of the stresses have been plotted for various 
values of ρ and compared with the results from finite element calculations. Some typical 
values of ρ are aluminium: ρ = 0.74, copper: 0.03, iron: 0.20 [12]. For the single crystal 
nickel alloys, CMSX4 and CM186, ρ  = 0.1 [13] and 0.12 [14], respectively. 
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Finite Element Analysis 
The semi-analytical crack tip fields obtained in the previous section are compared with 

finite element (FE) solutions. The FE calculations were conducted, using the finite element 
code ABAQUS [15], on a centre cracked plate loaded in tension (see Fig. 3). The crack 
length to specimen width ratio a/W = 0.1, which essentially corresponds to a crack in an 

FIGURE 3. Loading configuration of a Mode 

infinite plate. The material was modelled as being linear elastic. 

I specimen 

The FE mesh u loyed to allow 
a r

2W

σ

σ

2a
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sed for the analysis is shown in Fig. 4. A full mesh is emp
ange of mixed mode configurations to be examined in future work. In the figure three 

parts composing the mesh, are shown. Section (b) fits into the rectangular white area of (a) 
and section (c) fits into the white circles of (b). The current analysis was conducted under 
plane stress conditions using four node bilinear, reduced integration elements. The mesh 
used is composed of about 7000 elements, with the smallest size element being on the 
order of 1× 10-5 of the crack length. 

 

 
FIGURE 4. Mesh used for the FE analysis. Part (b) fits into the rectangular white area 

 

In Fig. 2, the comparison between the semi-analytical solution and the FE analysis is 
sho

of (a) and part (c) fits into the white circles of part (b). 

wn. The open symbols represent the FE solution and the lines are the semi-analytical 
solution. The FE stresses have been obtained at a distance r/a = 2 × 10-4, where the K-field 
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is expected to be dominant. It can be seen that excellent agreement is obtained between the 
FE and the analytical solution.  

 

Conclusions 
e precise form of the crack tip stress distributions in a cubic anisotropic 
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