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Abstract 
Two numerical crack propagation models, namely the cohesive model and the CTOA model, 
are compared regarding their ability to predict the crack propagation behaviour of fracture 
specimens made of thin walled Aluminium sheets, which can be simulated using plane stress 
assumption. The experimental database is presented and it is shown, how the various 
quantities are measured by different techniques (optically and with various clip gauges). It is 
explained how the respective parameters for the numerical models are determined by use of a 
selected set of fracture specimens. Other types of specimens are then used to validate the 
simulations with these parameters. In order to investigate the behaviour of the models under 
different constraint conditions and the transferability of their parameters, C(T) specimens are 
used for parameter evaluation and M(T) specimens for validation. It is shown that for all 
types of specimens, a single set of parameters can be used for both models.  

 

Introduction 
Thin aluminium sheets have a wide range of applications, especially in modern transportation 
industries. Since the safety of passengers and environment requires a safe design of machines 
and structures, but the production cost, on the other hand, requires economical usage of 
material, the dimensioning of the structures must be as exact as possible. A special issue in 
the design process is the so-called damage tolerant design, that means a structure that is partly 
damaged must in no case fail in an unstable manner. Even though the analytical methods, 
which have been developed for easier assessment of simple structures, are now able to predict 
failure of more complex ones (see e.g. [1, 2]), numerical simulations can still be very helpful 
here, since very complex three-dimensional structures with cracks can hardly be assessed 
analytically. Within the last three decades, several models for the analysis of crack 
propagation have been developed, since the determination of the crack initiation, e.g. by K or 
J concepts, does not give enough information about life of a structure in service. Two models 
which have attracted special attention are the CTOA (crack tip opening angle) and the 
cohesive model. 

The CTOA, which has been introduced particularly for describing crack extension in metal 
sheets [3, 4], is used as the characteristic parameter in crack propagation analyses where the 
crack extension itself is realised by a node release technique. The advantage of this model is 
that it has only a single parameter, the critical CTOA ψc, to model the fracture process, which 
can be determined by experiments [5]. A drawback is that only initially flawed structures can 
be analysed with this model. The underlying assumption for the application of the model is 
that after initiation of crack extension no further crack-tip blunting occurs, and the near crack 
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tip deformation field is characterised by a specific ψ, which can be used as a criterion of 
crack extension [6], 

ψ = ψ R (∆a) . 

The CTOA criterion is closely related to the crack driving force parameter, the CTOD 
(crack tip opening displacement), δ. A unique definition of a CTOD value for laboratory 
specimens as well as components, the δ5, has been proposed in [7]. Within a defined 
application range, CTOA is related to a δ5 R-curve by 

ψ = tan−1 dδ5

da
⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ ≈
dδ 5

da
. (1) 

Cohesive models [8, 9] allow for separation of interfaces between continuum elements, if 
some critical value of a separation is reached locally, whereas the material outside deforms 
according to elasto-plastic constitutive equations without any damage. The so-called process 
zone is a material volume, and material separation and fracture are controlled by a cohesive 
law, which has the general form σ = f(δ), where δ = [u] is the corresponding value of the 
displacement jump between adjacent continuum elements. In general, u is a vector quantity, 
but in mode I fracture, the normal component, δn, is sufficient for the crack propagation 
analysis (applications with shear fracture and mixed mode are for example described in [10]). 
Cohesive elements can be used in 2D and 3D models. Only a few applications exist for crack 
extension in metal sheets, see e.g. [11]. 

Various functions exist for the cohesive law [8-10], which have in common, that they 
contain two characteristic parameters (per fracture mode), a cohesive strength, σ0, and a 
critical separation, δc. The cohesive law proposed by Scheider [12],  
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has been implemented as a user-defined element (UEL) in the FE code ABAQUS [13]. 
The values for the shape parameters δ1 and δ2 are 1 0.05 and 0.5

c c

2δ δ
δ δ

= = , respectively. 

 

Experimental work 
The material used for this investigation is the Aluminium-magnesium alloy Al 5083 H321, 
which is widely used in shipbuilding and automotive industry. The thickness of the rolled 
plates as delivered by the supplier is 3 mm. From these plates, different specimens have been 
manufactured, namely flat tensile specimens with a width of 8 mm for the determination of 
the stress-strain curve, and several fracture specimens with different sizes. All specimens 
were tested under quasi-static conditions.  

Elastic properties of the material are E = 68000 MPa and ν = 0.33 and the yield stress is 
Rp0.2 = 243 MPa. The stress-strain curve was determined using a conventional clip gauge for 
the measurement of elongation. Therefore, experimental values were reported only up to 
maximum load, which was reached after an equivalent strain εeq = 0.125. The corresponding 
tensile strength is Rm = 346 MPa. An extrapolation has been added afterwards based on a 
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power hardening law. It was found that anisotropy of the rolled material is minor. Therefore 
isotropic von Mises plasticity has been used for all calculations. 

The different fracture specimens made of the Aluminium plate and used for the current 
investigation are summarized in Table 1. Other element sizes and types (cruciform specimens 
are machined as well, but are outside the scope of this investigation). All specimens are 
fatigue precracked. 

TABLE 1: Fracture specimens 

Name Type size crack length ratio a/W 

C(T)50 C(T) W = 50 mm 0.5 

C(T)150 C(T) W = 150 mm 0.5 

M(T)100 M(T) 2W = 100 mm 0.3 

M(T)300 M(T) 2W = 300 mm 0.2 

 

The C(T) specimens are equipped with a clip gauge for the measurement of loadline 
displacement, a second clip for the CTOD (δ5) measurement at the crack tip and a camera 
(combined with a stereo microscope) to take pictures of the specimen’s back surface for the 
determination of crack length and CTOA. The M(T) specimens use the same technique: The 
CTOD is measured at one crack tip only, the other crack tip is viewed by the stereo 
microscope. The remote displacement is measured in a distance of 1.5 times W for the M(T) 
specimens. Details of the experimental setup are described in [5]. 

The C(T) specimens are used for the determination of the respective material parameters, 
the M(T) specimens for the validation of the model with fixed material parameters. For all 
specimens the load-displacement curve and the δ5 R-curve are examined. 

 

Parameter determination  
For the current investigation, the C(T) specimens have been used to determine the respective 
material parameters for CTOA and the cohesive model. The M(T) specimens are used to 
estimate the transferability to different sizes and constraint conditions. The mesh used for the 
simulations is very similar for CTOA and cohesive model calculations. However, two 
differences exist: 1. The boundary conditions at the ligament depend the model used, 2. The 
element size at the ligament is different. For the cohesive model, the continuum elements 
adjacent to the cohesive interfaces have a length of 0.125 mm, whereas the elements in the 
CTOA calculations are 0.25 mm. This leads to much smaller models for the CTOA 
calculations and thus shorter computation times. In combination with the high robustness of 
the CTOA method (good convergence), the saving of computation time is a factor of about 3. 

 

CTOA simulations 
Despite numerous applications, there is still no unique definition or measuring standard for 

CTOA. It was proposed in [5] to determine the angle between four points closely behind the 
crack tip, see Fig. 1. An average value over a base length between 0.5 and 1.5 mm is taken 
for the sake of smoothness. However, for the first few millimetres of crack propagation, 
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where the shear lips are formed, this method leads to unrealistically high values. The 
derivative of δ5, Eq. (1), has been used for this part.  

The optical measurement as well as the CTOD-derivation show that CTOA decreases after 
initiation and reaches a stationary value, ψc, after a transient phase for both C(T) specimens, 

see Fig. 2. Note, however, that these data may scatter significantly, the 5d
d a

δ
∆

-curve contains 

averaged values. The saturation value of 5°, which is reached after 8 mm crack extension for 
the ψ-measurement, is taken as CTOA-curve for the crack propagation simulation. A 
numerical parameter fitting, where the experimental load-displacement and δ5 R-curves must 
be met, could also be employed instead to improve the coincidence between numerical and 
experimental results. The input for the finite element simulation is shown as the solid line in 
Fig. 2. The CTOA values in the simulations have a base length of 1 mm, over which the 
angle is calculated by the FE program ABAQUS. The experimental (symbols) and the 
simulated (black solid lines) load-displacement curves and δ5 R-curves achieved with this 
parameter curve are shown in Figs 3 and 4. 

 

 
FIGURE 1. Photograph of the crack tip showing the procedure for the experimental 

measurement of CTOA.  
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FIGURE 2. CTOA values for C(T) specimens, evaluated optically (symbols) and by 

derivation of the δ5 R-curve (dashed line), Eq. (1). With the optical method, a saturation 
value of 5° is reached after 8 mm of crack extension. The curve taken as input for the 

numerical simulations is shown with the solid line. 



ECF15 

 

C(T) W=50 a/W=0,5 

0

0,5

1

1,5

2

2,5

3

3,5

0 2 4 6 8

vll (mm)

Lo
ad

 (k
N

)
Exp. CT 50 no 11

Exp. CT 50 no 22

Sim., Cohesive
Sim., CTOA

C(T) W=50 a/W=0,5

0

0,5

1

1,5

2

2,5

3

3,5

4

0 5 10 15 20
∆a (mm)

δ5
 (m

m
)

Exp. CT 50 no 11
Exp. CT 50 no 22
Sim., Cohesive
Sim., CTOA

 
FIGURE 3: Experimental and the best fitting simulated curves (CTOA and cohesive 
model) for the C(T)50 specimen. Left: load-displacement curve; right: δ5 R-curve.  
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FIGURE 4: Experimental and simulated curves (CTOA and cohesive model) for the 

C(T)150 specimen. Left: load-displacement curve; right: δ5 R-curve.  

 

Cohesive model simulations  
The parameters for the cohesive model must be determined using a parameter fitting. Up to 
now, a procedure for the determination of the cohesive model parameters of ductile materials 
has been developed only for normal fracture, see Cornec et al. [14]. Related to this procedure, 
the J value at initiation, Ji, is taken as a first guess for the cohesive energy, Γ0, and the 
fracture load divided by the area of the normal projection of the inclined fracture surface 
yields a value, which is a lower bound of the cohesive strength, σ0. Following this procedure, 
the cohesive energy should be in the range Γ0 = [7 … 15] kJ/m² and the cohesive strength at 



ECF15 

least σ0 = Ffrac/Afrac= 484 MPa. The values determined by parameter fitting – the load-
displacement curves and the δ5 R-curves must meet the experimental curves for the C(T) 
specimens – give σ0 = 560 MPa and Γ0 = 10 kJ/m². The resulting curves are shown in Figs 3 
and 4.  

 

Validation 
The constraint difference, e.g. between C(T) and M(T) specimens, causes the so-called 
transferability problem, which typically results in different R curves for different specimens. 
A crack propagation model must be able to overcome these difficulties and predict R curves 
of different specimens with a single set of parameters. Therefore, two different M(T) 
specimens are analysed with the parameters determined in the previous section. Again, the 
load-deformation curve and the δ5 R-curve are evaluated. The results are shown in Fig. 5 for 
the M(T)100 specimen and in Fig. 6 for the M(T)300 specimen. The cohesive model shows 
very good agreement with the experimental curves, and the CTOA simulations are fairly 
good for the M(T)300 specimen, too. The reason for the deviation of the CTOA simulation 
from the experimental curves for the M(T)100 specimen is probably given by the different 
initial region of the curve R ( )aψ ∆ , since for M(T) specimens the constant CTOA is reached 
after more than 10 mm, whereas for C(T) specimen it is reached after 8 mm, see previous 
section. This problem affects smaller specimens more than large specimens, as a comparison 
between Fig. 5 and 6 shows. Nevertheless, the maximum load, which is the most interesting 
quantity in industrial application, is well predicted with the CTOA model, too. In addition, 
the results are conservative, i.e. the real structure is more damage tolerant than the simulation 
predicts. 
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FIGURE 5: Experimental and simulated curves (CTOA and cohesive model) for the 
M(T)100 specimen. Left: load-displacement curve; right: δ5 R-curve. 
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FIGURE 6: Experimental and simulated curves (CTOA and cohesive model) for the 
M(T)300 specimen. Left: load-displacement curve; right: δ5 R-curve. 

 

Conclusions 
The validation of the CTOA and the cohesive model showed that a large amount of crack 
propagation can be predicted by these models with good accuracy. Both models are able to 
reproduce the experiments, and the parameters can be transferred to other constraint 
conditions as well. It is shown that for small specimens where the initial range of crack 
extension, say the first 5 to 10 mm, is important for the overall behaviour, the variation of 
CTOA with crack extension, R ( )aψ ∆ , must be taken into account. For larger specimens, 
where this range is only a small portion of the total crack extension, the assumption of 
constant CTOA leads to very good results. This has been confirmed by tests with C(T) 
specimens up to a width of W = 1000 mm, which are not shown here. 

Despite the fact, that the results for the CTOA model are not as accurate as the cohesive 
model, the model has some very promising advantages: 

 Method is very robust and numerically stable. 

 Larger elements can be used, which makes the model small and computation times 
short. 

 A single parameter curve R ( )aψ ∆  is sufficient for different constraint conditions and 
sizes. 

 The R ( )aψ ∆  curve can be determined with experimental methods alone. 

 The method is not sensitive to uncertainties in the stress-strain curve. 

Advantages of the cohesive model: 

 The method leads to very good results for structures with different size and 
constraint conditions. 

 The two parameters of the cohesive model, σ0 and Γ0, are assumed to be constant 
and thus can easily be determined by parameter fitting. 
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 The cohesive model can not only be used for 2D thin walled, but also for thick or 
complex threedimensional structures. 

 The presence of an initial crack is not essential for the cohesive model 
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