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Abstract 
Crack problems in single crystals of hexagonal structure are reexamined from a new 
perspective. It is shown that, when the crack is on the basal plane, the asymptotic forms of the 
elastic crack-tip fields are identical with those in orthotropic media. Equivalent inclusion 
method in conjunction with Eshelby’s S tensor of a strongly oblate spheroid in transversely 
isotropic materials is used to solve penny-shaped crack problems. The stress intensity factors 
corresponding to uniform tension and shear are determined respectively. Griffith’s energy 
criterion for brittle cracking and Irwin’s energy release rate are discussed in the present 
context. Finally, the weight function for an axisymmetrically loaded penny-shaped crack is 
derived. It is found that the axisymmetric weight function is independent of the material 
constants and is identical with the isotropic case. 

1. Introduction 
In this article, crack problems in single crystals of hexagonal structure are reexamined from a 
new perspective. The crack is assumed being contained in the (0001) basal plane. We briefly 
review the crack-tip displacement fields in an orthotropic solid so that the definition of 
symbols and notation can be clarified and unified. In section 3, We explicitly show that the 
mathematical expressions of the elastic crack-tip fields in transversely isotropic materials are 
completely identical with those associated with orthotropic media. In section 4, by the 
method of equivalent inclusion in conjunction with Eshelby’s [1] S tensor for a thin oblate 
spheroid in transversely isotropic materials, problems of a penny-shaped crack subjected to 
remote uniform loading are solved and the associated stress intensity factors are determined. 
Related elastic energy consideration and its connection to Griffith’s [2] theory of rupture, 
Irwin’s [3] energy release rate of the crack tip, as well as the axisymmetric weight function 
are analyzed and discussed. 

2 Crack opening displacements in an orthotropic medium 
We choose a rectangular coordinate such that three planes of elastic symmetry are coincident 
with the coordinate planes. The crack is on the -plane.( i.e. the crack surface is normal to 

 axis as shown in Fig.1.) It is known that the crack-tip displacement field can be 
characterized by three stress intensity factors ,  and  as shown in Sih and 
Leibowitz[4].. Specifically, the displacements of the crack surface (referring to Fig.1, with 
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Plane skew-symmetric deformation 
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Lekhnitskii’s [5] complex parameters 1µ  and 2µ  are the roots (with positive imaginary part) 
of  the following equation, 
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where ijβ  are the reduced elastic constants of compliance. In fact ijβ  can be related to the 
elastic constants of stiffness by the following equations ijC
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The third Lekhnitskii’s complex parameter 3µ  is given by
44

66
3 C

C
i=µ . It is noted that 

complete information concerning the elastic crack tip fields can be found in [4]. 

 

 

FIGURE 1. The coordinate axes and crack orientation 

   3. Crack tip fields for cracks on the basal plane of hexagonal crystals 
Referring to Fig.1, the basal plane is parallel to the  plane in which the crack is 
contained. The crack front is along the -axis. Traditionally, in solving elasticity problems 
in a transversely isotropic material, it is expedient to introduce three material characterizing 
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numbers: 1ν , 2ν  and 3ν (Pan and Chou [6]). 1ν , 2ν  are the (positive) roots of the following 
equation 
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and 
44

66
3 C

C
=ν . By comparing (4) and (6) with aid of (5) and noting that  in 

transversely isotropic materials, we may conclude that

5544 CC =

11 νµ i=  , 22 νµ i=  In addition, 

33 νµ i= is self-evident. This fact indicates that the asymptotic forms of the elastic crack-tip 
(displacement and stress) fields for cracks on the basal plane are identical with those shown 
in the preceding section. Furthermore, following identities will be useful in our subsequent 
analysis: 
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4.Penny-shaped crack problems 
The equivalent inclusion method is used in this section to determine the geometrical change 
of a penny-shaped crack under the influence of remote uniform loading. The crack is treated 
as the limiting form of a strongly oblate spheroidal cavity. In other words, the crack is 
described by 
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with  (see the coordinates shown in Fig.2). It is sufficient to consider two cases of 
applied loading  and  independently for the present purpose. The success of the 
equivalent inclusion method hinges on the determination of Eshelby’s S tensor. The exact 
expressions for the S tensor have been derived recently by Chiang [7]. In fact only following 
components are needed  
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FIGURE 2. The rectangular and polar coordinates 

4.1 The displacement  of  crack surface due to   A
33σ

The procedure of the equivalent inclusion method has been outlined in [1,7], only relevant 
results are presented here. The only non-vanishing eigen strain  corresponding to  is 
determined by the following equation 
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displacement of the crack (upper) surface due to  is A
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Here the origin of the coordinate is at the center of the crack. Referring to the local coordinate 
at the edge of the crack shown in Fig.2, near the edge of the crack , the crack surface 
displacement is given by 
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where r is the radial distance from the crack edge. Comparing (9) with the  displacement 
field in (1)  and noting that 
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We find aK A
I πσ

π 33
2

=  which is independent of the material constants. This result has been 

shown through different procedures by Kassir and Sih [8]. 

4.2 The displacement of crack surface due to  A
13τ

In this case, the only non-vanishing eigen strain due to  is  which is determined by A
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displacement  of the crack surface associated with  is 1u *
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Here the origin of the coordinate is at the center of the crack. Referring to the local  
coordinate at the edge of the crack (Fig.2) and resolving the displacement into radial and 
circumferential components, i.e. φcos1u  and φsin1u− . Then, the near-edge crack surface 
displacement can be written as 
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By writing (2) and (3) in terms of the coordinates  and in Fig.2,  we find re φe
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where ( )IIIIIIIII QQQY += /2  and ( )IIIIIIIIIII QQQY += /2 . Numerical results for  and  
of several hexagonal crystalline elements are given in Table 1. It is noted that 
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and for transversely isotropic materials 2/)( 121166 CCC −= . When the material is isotropic, 
we have the known result[8,9] 
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where ν is the Poisson’s ratio of the material. 
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TABLE 1. Numerical results of  and  for some hexagonal crystals. Elastic constants 
are taken from Reid[10]  
IIY IIIY

Material 11C /GPa 12C /GPa 13C /GPa 33C /Gpa 44C /GPa IIY  IIIY  

Be 292.3 26.7 14.0 336.4 162.5 1.0244 0.9756 

C(Graphite) 1160 290 109 46.6 2.3 1.1779 0.8221 

Mg 59.52 25.6 21.4 61.74 16.47 1.1937 0.8063 

Ti 162.4 92.0 69.0 180.7 46.7 1.2505 0.7495 

Co 306.3 165.1 101.9 357.4 75.3 1.2611 0.7389 

. 

5. Energy change due to the presence of a crack 
Again, we assume only  and  are present, so the potential energy reduction can be 
written as 
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On the other hand, forming a penny-shaped crack of radius a , the material will increase 
the (surface) energy by  where Γ22 aπ Γ  is the surface energy per unit area. According to 
Griffith’s fracture model, the critical condition is governed by 
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This leads to the critical stress condition 
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Obviously the above equation is meaningful only when  is positive(tension).When  is 
compressive, the first term in (19) should be ignored if the crack surface is frictionless. 
Equation(19) indicates that the failure surface plotted in the stress space (

A
33σ A

33σ

)1333 ,τσ   is an 
ellipse whose size is proportional to the inverse of the crack size. Nevertheless, the validity of 
(19) is very restricted since the presence of  tends to cause the crack to grow in an 
asymmetric manner. 

A
13τ

   6. Energy release rate 
Irwin [10] has proposed an energy criterion for the crack growth which turns out to have 
more advantages than Griffith’s model in terms of engineering applications. The energy 
release rate (crack extension force) G is defined as the energy change during an increment of 
crack extension. If the penny-shaped crack is assumed to grow quasi-statically on the basal 
plane, the crack-tip stress and displacement fields allow us to establish the connection 
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between the energy release rate G and the stress intensity factors by the crack closure work 
calculation as follows 
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Now, if we assume that the crack would grow when G reaches a critical value ( e.g. under the 
influence of  and  , the crack start propagating at  and  in Fig.2) then 
substituting the stress intensity factors found in section 4 into (20) we have 
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It is noted that when =0, (21) is identical with (19) if  is identified with A
13τ cG Γ2  as 

expected. Like equation (19), (21) indicates that the failure surface is an ellipse. Since for all 
hexagonal crystals > , critical value of  predicted by (21) is always lower than that 
by (19) when keeping other parameters fixed. This implies that the crack has a tendency to 
grow asymmetrically when  is present. Furthermore, it should be recognized that in 
addition to the surface energy, in real materials other physical process such as plastic 
deformation should be taken into account in the estimate of  .  
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7. The weight function for an axisymmetrically loaded crack 
The concept of weight function originated by Bueckner [11] and re-interpreted by Rice [12] 
has provided a convenient method to calculate the stress intensity factors once a reference 
solution is available. In this section, the result of axisymmetrically loaded cracks is derived. 
Let   and denote the stress intensity factors of a penny-shaped crack subjected to 
two different loading conditions respectively. In the absence of body forces, using Betti’s 
reciprocal theorem with a virtual crack extension 
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where  is the crack surface. S )1(T  is the (normal) traction of  loading-(1) and  is the 
displacement (along  axis) of the crack surface due to loading-(2) . 
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Equation (23) is independent of the material constants and in fact is identical with isotropic 
case[8]. With (23) the stress intensity factors for any arbitrary axisymmetric loading can be 
evaluated by a simple integration. 

8. Concluding remarks 
It has been shown in this article that the asymptotic forms of elastic crack-tip fields of cracks 
on the basal plane are identical with those for orthotropic media. Furthermore, it should be 
pointed out that when the crack is oriented with -  being the basal plane (Fig.1) then the 
elastic crack-tip fields become identical with those in isotropic materials as this situation 
corresponds to a degenerate case of orthotropic media. 

1x 3x

Under small-scale-yieldng conditions, the size of the plastic zone is governed by the local 
stress intensity factors. For a penny-shaped crack subjected to pure shear stress , the 
plastic zone surrounding the crack border has been determined [13] by assuming the plastic 
zone is restricted on the basal plane. On the other hand when  is present, the situation 
becomes very complicated since pyramidal and/or prismatic slip modes other than basal slip 
mode may be activated. This complicated problem is currently under investigation. The 
results will be reported in due time. 

A
13τ

A
33σ

This work was supported in part by the National Science Council of Taiwan. 

References  
1. Eshelby, J.D., Proc. Roy. Soc. London A241, 376-396, 1957 

2. Griffith, A.A., Phil. Trans. Royal Soc.  London A221, 163-197 ,1921 

3. Irwin, G.R., J. Appl. Mech. 24, 361-364, 1975 

4. Sih, G.C. and Leibowitz, H., in Fracture. II  edited by H. Leibowitz, Academic Press, 
New York, 1968 

5. Lekhnitskii, S.G.. Anisotropic Plate. Gorden and Breach, New York,1968 

6. Pan, Y.C. and Chou, T.W., J. Appl. Mech. 43, 608-612, 1976 

7. Chiang, C.R., Int. J. Fracture 119, L91-L97, 2003 

8. Kassir M.K. and Sih, G.C., Three-dimensional crack problems. Noordhoff, Leyden, the 
Netherlands 1975 

9. Segedin, C.M., Proc. Camb. Phil. Soc.  47,396-400, 1951 

10. Reid, C.N., Deformation geometry for materials Scientists. Pergamon Press. Oxford 1973 

11. Bueckner, H.F. In Mechanics of Fracture I. Method of Analysis and Solutions of Crack 
Problems edited by G.C.Sih, Noordhoff, the Netherlands,1972, 

12. Rice, J.R., Int. J. Solids Struct. 8, 751-758 ,1972 

13. Chiang, C.R., In Dislocations, Plasticity and Metal forming edited by A.S. Khan, NEAT 
Press, Maryland 2003, 513-515. 


