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Abstract 
Local damage models usually have the disadvantage that results are strongly mesh 
dependent. The reason is that the type of the underlying partial differential equations 
changes under quasi-static conditions from elliptic to hyperbolic. Non-local damage 
models do not exhibit such behaviour under certain conditions. The usage of such non-
local damage models in finite element analyses opens the possibility for preserving the 
ellipticity of the partial differential equations and thus avoiding mesh dependence of 
numerically obtained results. The loss of ellipticity for local models and its preservation for 
non-local models are demonstrated for a wide variety of examples enclosing ductile 
damage. In the present investigation, the non-local damage model is applied to the 
simulation of ductile crack extension in fracture mechanics specimens. The type of the 
underlying differential equations is permanently analysed and controlled. 

 

Non-local extension of Gurson´s model 
The basic equations of the local Gurson model in the formulation of Tvergaard and 
Needleman include the yield condition 

( ) ( ) ( ) 01
2
trcosh2,,

2
1212 =−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=Φ ∗∗ fqqfqf

MM

v
M σσ

σ
σ σσ , (1) 

the evolution equation for the modified void volume fraction 
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and the evolution equation for the void volume fraction 

( ) ( ) ( ) MMnucleationgrowth Affff εε &&&& +−=+= ptr1 D  . (3) 

The meaning of those parameters is explained several times elsewhere, e.g. [1]. It is 
typical for local models that only the equilibrium equations for the forces are fulfilled 
within the context of a finite element analysis. State dependent variables, such as the void 
volume fraction f, dependent on the evolution equations and the achieved equilibrium of 
the whole structure. This means that adjacent state dependent variables dependent 
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indirectly from each other by means of the achieved equilibrium. It is typical for the results 
obtained by local damage models that strain softening yields strongly mesh dependent 
results because the underlying differential equations do not remain elliptic [2].  

An excellent method to overcome such problems are non-local damage models. The 
basic idea is to introduce an additional degree of freedom d as a non-local damage variable 
for which the balance equation 

0with2 ≥=∇− cfdcd &&&  (4) 

holds for the time derivative . The coupling between the spatial damage is done by the 
Laplacian and the equation is driven by its right hand side  which is identical to the 
time derivative of the still existing local damage variable f. The newly introduced material 
parameter c describes the intensity of coupling the damage in spatial direction and is 
sometimes called critical length. If c equals zero, the gradient part in eq. 4 vanishes and the 
local model results. In the present investigation, c is assumed to be a constant. 

d&
2∇ f&

Additionally, we introduce a modified yield condition, where the local modified void 
volume fraction  is replaced by the modified non-local void volume fraction  *f *d
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The definition of the non-local void volume fraction is almost identical to the local case: 
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The boundary conditions for the non-local damage variable  are d&
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and hold for the cases that the rate of non-local damage production vanishes and that a 
“flow” of voids normal to the boundary is not possible, respectively. The constitutive 
approach is justified in the framework of rational thermodynamics as shown in [3, 4]. 

The implementation of the model into a finite element code requires a weak formulation 
of eq. (4) 
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where η is a test or variational function fulfilling the boundary conditions of . The model 
is implemented into a commercial finite element code allowing for an additional degree of 
freedom beyond the three degrees of freedom for the conventional static equilibrium. 
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Loss of ellipticity 
The loss of ellipticity of partial differential equations is typically associated by the loss of 
uniqueness of the solution of such equations. The underlying system of differential 
equations for the local case is given in terms of the displacements u. The rate form for 
these equations is written as  

( ) ( )LCT :divdiv =&  (9) 

following from the equilibrium equations with the rate of Cauchy´s stress , the spatial 
velocity gradient L and the constitutive law with its operator 

T&
C . The ansatz for the 

velocity field is  
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where x denotes a material point, n the direction of a wave front and k the wave number. 
The unknown velocity amplitude is and i the imaginary unit. Introducing the ansatz (10) 
into the equilibrium yields a system of linear equations, which has only solution, if 

0u&
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which is the condition for the loss of ellipticity for local models, wherein H is introduced 
as the acoustic tensor. At this point, a strain rate jump with an unknown amplitude  may 
occur in the direction of n. 

0u&

For non-local models not only the displacements u are primary unknowns, but the non-
local damage d as well. For that reason, the ansatz of eq. (9) is extended to the non-local 
case by 
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which is introduced into the balance equation (4) resulting together with eqs. (9, 10) in a 
3x3 system of linear equations for every material point x and every direction n. This 
system of equations has only solutions, if 

( ) ( ) 0detdet NLNL ==⋅⋅ HnCn , (13) 

where the non-local constitutive operator is denoted as NLC  and the respective non-local 

acoustic tensor as . Typically both, the constitutive operator and the acoustic tensor 
depend on the wave number k and the material parameter c. A schematic draw in Fig. 1 
shows that  depending on c and k may take values smaller or larger than zero 
meaning that even non-local equations may become hyperbolic. The condition (13) for 
preserving ellipticity, i.e. , is only fulfilled, if sufficiently high values of c and 
k are taken, which typically is ensured by the problem formulation and an adequate choice 
of c. The meaning from a more practical point of view is that the spatial coupling of 
damage expressed by the material parameter c has to be strong enough and that the wave 
number k should be chosen sufficiently high. The last point is easily achieved as only high 
wave number k are important because only they may lead to strain rate jumps. 
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Results 
Fig. 2 shows a rectangular plate under plane strain conditions loaded by a prescribed 
displacement on its upper boundary. The initial imperfection consists of a slightly larger 
initial void volume fraction f0 somewhere in the inner domain of the plate. The calculations 
are performed by using regular meshes with different mesh sizes. The load vs. 
displacement curves reveal the strong dependence on the mesh size for the local case, i.e. 
smaller meshes lead to earlier failure. In contrast to that, the results of the non-local model 
are almost identical for the investigated mesh sizes. 

Fig. 3 provides a more detailed information on the damage in the rectangular domain. 
Especially for the local case, the thickness of the damage band decreases with the element 
size. Even the orientation of the damage band changes depending on the element size. In 
contrast to that, the orientation and the thickness remain constant for the non-local 
calculations. 

The results regarding the loss of ellipticity are given in the lower part of Fig. 3. On the 
ordinate,  for the local and  for the non-local case are given vs. the upper 
displacement. Both acoustic tensors are calculated at every integration point and the 
normal vector n is taken for every position from –π to +π. The minimum of all of these 
calculations is taken for Fig. 2 at one upper displacement. Loss of ellipticity occurs for the 
whole structure, if only in one point condition (11) or (13) is achieved during the whole 
process. For the local case, condition (11) is obviously violated and ellipticity is lost. In 
contrast to that, condition (13) is not fulfilled meaning that ellipticity is ensured and 
numerically obtained results are reliable. 

Hdet NLdet H

The aim is the application of non-local models to simulate ductile crack growth in 
fracture mechanics specimens. As a first example, the influence of mesh sizes on load vs. 
displacement curves is shown in Fig. 4. In total, we investigate the influence of three 
element sizes with edge lengths from 0.05 mm to 0.2 mm in the crack tip region. The load 
vs. displacement curves in the upper part of Fig. 4 exhibits the strong influence of the mesh 
sizes on the results. The smaller the elements are in the crack tip region the earlier failure 
occurs thus leading to decreasing load vs. displacements curves. A convergence of load vs. 
displacement curves against a limiting curve with decreasing mesh sizes as it is known 
from elliptical problems does not exist for the local formulation of such damage models. 
From other investigations it is known that ellipticity is lost for local models in a very early 
loading stage in the application to fracture mechanics specimens [2, 4].  

Additionally, the maximum of the damage does not appear on the symmetry line, but 
the second and third row of elements, which is unrealistic as ductile crack growth typically 
appears on the symmetry line of the specimen. 

In the lower diagram of Fig. 4, the results for the non-local case are shown for the 
identical mesh sizes as used in the local case. The three load vs. displacement curves are 
much closer together than for the local equations. That these curves are not identical is 
related to the fact that the problem is elliptical and that the numerical solutions converge 
against a limit with decreasing mesh size. It was shown in earlier investigations that the 
equations remain elliptic for that example [2, 4]. For the non-local case, the evolution of 
damage occurs on the symmetry line, as shown in the lower part of Fig. 4. This result is 
absolutely realistic and shows the correctness of the proposed method. 
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Conclusions 
Local damage models have the deciding disadvantage that the obtained results in any 
numerical procedure are mesh dependent resulting from the loss of ellipticity of the 
underlying system of differential equations. Thermodynamically founded non-local models 
preserve ellipticity over a wide range and they are a promising step to overcome such 
problems. The mesh dependence only occurs in a conventional way as it is typical for 
elliptic problems. The progress for the application of damage models is that such non-local 
models are applied to simulating ductile crack growth in fracture mechanics specimens. It 
is shown that the results are widely independent of the underlying FE-mesh. 
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FIGURE 1. Influence of the gradient strength c and wave number  k on the 
regularization
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FIGURE 2. Load-displacement response for a rectangular plate with plane strain 
conditions under tensile load (local and non-local model) 
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FIGURE 3. Damage distribution for a rectangular specimen under tensile load 



ECF15 

 

 

FIGURE 4. Local vs. non-local crack progress simulation for C(T) specimen with 
various mesh discretizations (le=0,2 mm and 0,1 mm; material: 10MnMoNi5-5) 


