
ECF15 

A STUDY ON CRACK PROPAGATION IN 
HETEROGENEOUS ELASTIC-PLASTIC SOLIDS 

 
Kartik Srinivasan1, Thomas Siegmund1, Otmar Kolednik2

1School of Mechanical Engineering 
Purdue University, West Lafayette, IN 47907, U.S.A. 

ksriniv@ecn.purdue.edu 
siegmund@ecn.purdue.edu 

2Erich Schmid Institute of Materials Science 
Austrian Academy of Science, A-8700 Leoben, Austria 

kolednik@unileoben.ac.at 
 

Abstract 
In the vast majority of studies on ductile crack growth, the commonly made assumption is 
that of constant material properties along the crack path. Even in macroscopically 
homogeneous materials, however, the local material properties vary due to the random 
variation of the microstructure, e.g., variations in size, shape, and distribution of precipitates 
and inclusions. As a consequence, the crack propagation processes in ductile materials should 
be in a more realistic picture characterized by random fields of elastic-plastic material 
properties as well as random fields of the local parameters characterizing the material 
separation process. We report the results from 2D crack growth simulations in an elastic-
plastic material conducted with the use of a cohesive zone model. The local randomness in 
the material parameters is accounted for through variations of the separation energy.  

 
Introduction 
For micro-ductile fracture, the separation energy, Г, represents the plastic work per unit area 
required for the formation of the dimple structures on the two fracture surfaces. Stüwe [1], 
introduced a model to estimate the specific plastic strain energy to form the two dimpled 
fracture surfaces of a micro-ductile crack based on a model of void growth, Rsurf. The result is 
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where σ is an appropriate mean flow stress of the material, which can be estimated by 
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σu is the ultimate tensile strength and n the (average) strain hardening coefficient,  S denotes a 
shape factor of the dimples which has been found to be approximately S ≈ 0.25 (Stüwe, [2]).  
In Eq. 1, h0 is the dimple height. This value can be determined from the topography of the 
corresponding fracture surface regions on both specimen halves. The topographic 
measurements providing the basis for the present paper were performed by stereophoto-
grammetric measurements using stereo image pairs taken in the scanning electron microscope 
by tilting the specimen. Such estimates have been introduced in Kolednik and Stüwe [3]. 
More modern stereophotogrammetric measurements, applying a digital image analysis 
system (Stampfl et al., [4]; Scherer and Kolednik, [5]), have been reported in Stampfl et al. 
[6], Stampfl and Kolednik [7] and Miserez et al. [8].   
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FIGURE 1: (a) Fracture surface region of the steel St37 with narrow and broad dimples. 
Different broken pieces of MnS-inclusions are visible. (b) A crack profile. The thick line 
represents the fracture surface profile AB, the thin line the corresponding profile on the 

second specimen half. 

A typical view of the fracture surface of the material under consideration, St37, is shown 
in Figure 1(a). As Rsurf depends on the total dimple height, given by misfit between the two 
fracture surfaces, it is necessary to analyze corresponding regions on both halves of a broken 
specimen. Combining the information from two surfaces, a crack profile is obtained, Figure 
1(b). From this diagram, a characteristic misfit of 2h0 ≈ 80 µm is measured. This, inserted 
into Eq. 1 for σ  ≈ 600 MPa, leads to a value of Rsurf ≈ 12 kJ/m2. In this material, the dimple 
structure is mainly influenced by the distribution of the MnS inclusions. Due to the 
microstructural scatter, the dimple heights vary. Regions where small and large dimples occur 
together are observed in addition to regions with sequences of only smaller dimples. The 
latter regions can be up to a few hundreds of micrometers long. It should also be noted that 
crack extension is, considered at the microscopic scale, a discontinuous process of local 
blunting and extension steps (Turner and Kolednik, [9]). Accounting for this variation in 
dimple height, the value of Rsurf is roughly estimated to be Rsurf ≈ 12 ± 4 kJ/m2.  Adding a 
reasonable estimate for the specific energy for void initiation (Rvi ≈ 2 kJ/m2) to Rsurf, we 
arrive at estimates for the separation energy, Г. We obtain a mean value of  Rsurf + Rvi ≈ 14 
kJ/m2 and corresponding minimal and maximum values of 10 kJ/m2 and 18  kJ/m2, 
respectively. The observed spatial variation of the separation energy motivates the simulation 
described in the present paper.  

 

Material 
The material investigated is an annealed mild steel with the German designation St37. The 
microstructure has ferrite grains with a mean intercept length of 17 µm with small carbide 
particles embedded and a distribution of MnS inclusions. In this paper, the bulk material 
properties are taken as Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.3, yield strength 
σy = 270 MPa, ultimate tensile strength σu = 426 MPa, average strain hardening coefficient   
n = 0.2; Yan et al. [10]. Experimental results on multi-specimen fracture mechanics tests 
(CT-specimens of thickness B = 25 mm, width W = 50 mm, initial crack length a0 ≈ 27 mm) 
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were reported in Chen et al. [11]. The tests gave a valid JIC = 120 kJ/m2; the physical crack 
extension in the center region begins much earlier, Ji = 39 kJ/m2 (Shan et al., [12]). No shear 
lips are seen on the fracture surfaces.   

 

Cohesive zone modeling and data analysis 
 
Mesh for the finite element modeling 

The simulation of crack growth is performed by using the finite element code ABAQUS [13]. 
Half of the CT-specimen is modeled. 4-node plane strain elements are used for the bulk 
elements. 

Cohesive elements are placed at the crack plane. Each cohesive element has two faces 
with 2 nodes on each face. The cohesive element has 2 integration points. The top face is 
connected with the adjacent bulk element, while the bottom face is connected with the y = 0 
plane. Due to symmetry, only half models are analyzed. The size of the cohesive elements in 
the crack growth direction is 25 µm. 

When no load is applied, the top face of the cohesive zone element coincides with the 
bottom face; when a tensile load is applied, the deformation of the bulk elements pulls the top 
face away from the bottom face. The constraint conditions are defined as following: uy = 0 
for the nodes at the plane y = 0 from the position of the last cohesive element in the                 
x direction to the right-hand edge of the model; uy = 0 for the nodes at the bottom faces of the 
cohesive elements; ux = 0 for the nodes at the the point were the load is applied. The 
displacement is applied to the node at the left-hand edge of the model at position y = 19.5 mm. 
The load line displacement, vLL, is obtained from the node at the left-hand edge of the model 
at the position y = 6.85 mm. Details of the model can be found in Chen et. al. [11]. 

 

The traction-separation behavior 

Needleman’s [14] traction−separation function is used to define the relationship between the 
cohesive normal traction, T, and the separation distance normal to the crack plane, δ, as 
follows: 
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where Tmax is the cohesive strength and δf  the cohesive length. As a CT specimen geometry 
with only pure Mode I loading is considered, and as no shear lips appear at the side-surfaces 
of the St37 specimens, it is reasonable to consider only the normal separation. The normal 
separation energy, Γ, is defined as 

0
df T

δ
δΓ = ∫  .               (4) 

Inserting Eq. 3 into Eq. 4, the relationship between the three parameters, Г, Tmax, and δf is 
obtained as 

max
9

16 fT δΓ =  .               (5) 
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In the model analyzed here a spatial variation of the separation energy was accounted for, 
while the value of the cohesive strength was kept constant. Based on the results described in 
Chen et al. [11], a plane strain calculation with Гavg = 16.0 kJ/m2 and Tmax= 1025 MPa can 
best fit the experimental data. Then, the observed scatter of 20%± variations in Г were 
accounted by defining  Гmin = 12.8 kJ/m2 for the first 250 µm,  Гmax = 19.2 kJ/m2 for the next 
250 µm, and so on. Figure 2 shows the traction−separation function, Eq. 3, for  
used in the calculations.  

avg min max, ,Γ Γ Γ

 
FIGURE 2. The traction separation relationship, Equation 3, for avg min max, ,Γ Γ Γ . 

The crack tip is defined as the location with the largest value of x-coordinate connected 
to the initial crack at which the separation distance just reaches δf  i.e. the tractions vanish.  
This is reasonable for micro-ductile fracture where the decreasing part of the                 
traction–separation function shall reflect the weakening of the material in the process zone in 
front of the crack tip due to void growth and coalescence. Furthermore, we define a critical 
crack tip opening angle as the angle between the cohesive element faces at the instance of 
crack advance.  This definition of CTOA is different from that used in many other studies, but 
useful for an understanding of the material separation process. 

 

Results 
     Crack growth simulations were conducted for three sets of constant cohesive zone 
parameters prescribed in front of the crack tip, Γavg, Γmin, Γmax  as well as for the case with 
spatially varying separation energy, Γ=Γ(x). Figure 3 depicts the predicted data for the force 
F vs. the load line displacement, vLL.  Predicted data fall within the scatter band of the 
experimental data. For the computations with constant values of Γ, the cases Γmax and Γmin 
are above and below the prediction with Γavg. For the computation with Γ=Γ(x), the 
computations predict an oscillating result. It should be noted that the prediction for the case 
Γ=Γ(x) is below that of Γavg, despite the fact that the average separation energy for Γ=Γ(x) is 
identical to Γavg. Instead, predictions for the case with spatially varying separation energy are 
close to those for Γmin. 
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FIGURE 3: Predicted results for force vs. load line displacement. Comparison of 

cases with constant Γ  to those with spatial variation in  .Γ

The influence of the spatial variation in the separation energy is more clearly seen in the 
plot of crack extension, , vs. load line displacement, va∆ LL, Figure 4(a). Again, the 
computational results compare well with experimental crack extension data measured at the 
midsection of the specimen. Predicted data for the case with spatially varying Γ show larger 
amounts of crack extension than for the case of Γavg. Crack extension rates show considerable 
local variation. As the crack propagates through a region with Γmin the crack growth rate is 
large, however, at the transition to the area with Γmax, significant crack retardation or even 
temporary crack arrest occurs before the crack continues to grow again. At the transition back 
to Γmin, the crack growth rate is temporarily large such that at this point the crack essentially 
jumps ahead a distance of up to 100 µm. This crack jump is enabled by the formation of a 
secondary crack. Such a crack forms in front of the main crack when its tip approaches the 
area with Γmin. In Figure 4(a), the secondary cracks are denoted by diamond-shaped symbols.  

A further understanding of the crack propagation process under consideration of the 
secondary cracks is obtained by considering the crack tip opening angle at failure, δ = δf , in 
dependence of the position of a material element relative to the original crack tip. These 
results are depicted in Figure 4(b). From the results of many previous studies using the CTOA 
concept to study crack growth, one would expect an initially large value of CTOA that would 
reduce to a rather constant, smaller value as the crack propagates. Such a response is, 
however, present only on a “large” scale if spatial variations in the separation energy are 
accounted for. As the crack propagates through the initial 250 µm, an initially large value of 
CTOA is found, with a subsequent rapid decay. This decay in CTOA is stopped as the crack 
approaches the Γmax area. Crack arrest then occurs and the value of CTOA increases 
significantly again for material elements still in the Γmin area. Once the crack has overcome 
the arrest phase in Γmax, CTOA decreases as the crack starts to grow again. It is important to 
observe, however, that CTOA at the later stages of growth in the Γmax area drops rapidly and 
no steady state is reached. This drop in CTOA is due to the presence of the secondary crack 
that has now formed in front of the main crack. As the two cracks merge, the CTOA is 
reduced.  This low value in CTOA is understood when considering the ratio between the 
remaining ligament between the main crack and the secondary crack to the cohesive length. If 
the ratio between these two dimensions becomes small, a transition from a crack type 
behaviour to a uniform debonding case occurs, Li et al. [15]. This stage of reduced CTOA 
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affects both the area of Γmax as well as the subsequent Γmin. After the main crack and the 
secondary crack have merged, with the tip now in the Γmin area, CTOA tends to show again a 
crack growth type transition from a large CTOA to a small CTOA value. The drop in CTOA 
is, however, quickly stopped as the crack is arrested at the next transition to Γmax.  
Subsequently, the process described repeats itself. 

 

 
(a) 

    

(b) 

 FIGURE 4: (a) Crack extension, ∆a, vs. load line displacement, vLL (b) The crack tip opening 
angle at the instance of failure (δ = δf ) in dependence of the initial location in front of the 

original crack tip. Gridlines show the border between areas with minΓ and . maxΓ

It is well known from previous studies of systems with major and minor cracks, e.g. in 
multi-site damaged thin sheet specimens, Li et al. [15], that the interaction between the major 
and minor cracks can significantly affect crack growth resistance. Here, crack growth 
resistance is quantified both by the use of the J-integral as well through the dissipation rate. 
The computed values for the J-integral are given for the cases Γavg, Γmin, Γmax as well as for 
Γ = Γ(x) in Figure 5(a).  The crack growth resistance predicted for the case with Γ = Γ(x) is 
well below that of Γavg, and tends towards the values of J predicted for Γmin as the amount of 
crack extension increases. 
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(a) 

 

(b) 

FIGURE 5: (a) Predicted values of J-integral in dependence of the crack extension, .     
(b) Normalized dissipation rate, R

a∆
 / Γ(x), vs. crack extension, a∆ . Gridlines show the border 

between areas with Γmin and Γmax. 
    An even stronger deviation from the “average” behaviour is found if the dissipation rate is 
evaluated, Figure 5(b).  Strong spikes in the dissipation rate occur during the crack arrest 
stage. The normalized value of the dissipation rate at that instance, R / Γ(x), reaches values 
comparable to those found at the initiation of crack growth at the initial crack tip, thus by far 
exceeding the values of R / Γ found in calculations with constant values of the separation 
energy. These large spikes in dissipation rate are followed by a growth step in which no 
energy is dissipated, i.e. during the link up of the main and secondary cracks.   A second, but 
significantly smaller spike in R / Γ(x) is found in the Γmin area. This step corresponds to the 
growth of the main crack through the Γmin area after link up.    

It is seen from Figs 4(b) and 5(b) that, at the macro-scale, a steady state condition has 
been reached after a crack extension of about 2.5 mm: The average values of CTOA and R, 
and even the local maxima and minima, remain constant during further crack extension. At 
the micro-scale, however, large variations appear which correspond to a sequence of local 
blunting and extension steps as noted in [9]. 

 
Conclusions 
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   The paper deals with the 2D crack simulations in an elastic-plastic material which accounts 
for heterogeneity in the microstructure of the material. Material heterogeneity is introduced 
by varying the separation energy in the cohesive zone constitutive equation used to describe 
crack growth. The cohesive strength is kept constant.  

   The paper presents results for three cases of constant separation energy and for a case with 
spatially varying separation energy. The predicted force - load line displacement curves fall 
into the scatter band for experimental results. It is noted that the prediction for the case with 
spatially varying separation energy are close to those from the computations with a constant 
lower separation energy, Γmin , rather oscillating about the results from the computations with 
the average value of separation energy, Γavg. This trend is also observed in the crack growth 
resistance curves based on the J-integral. 

    The decreased apparent toughness for the case of spatially varying separation energy can be 
explained by the presence of secondary cracks in front of the main crack tip. The formation 
the secondary cracks and their link-up with the main crack introduces strong local variations 
into the rate of energy dissipation. During the link-up the behaviour is that of a uniform 
debonding across the remaining ligament between main and secondary crack : a process 
occurring with significantly reduced dissipation.The present results shed light on the attempts 
to determine the separation energy (and thus cohesive zone parameters to be used in 
computational studies) from fracture surface measurements. The use of “averages” over the 
local variables, i.e. the average dimple height, on the fracture surface might in fact not be 
sufficient to characterize a material.  
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