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Abstract 
The problem of deciding which statistical model is the “true one” in fatigue studies has 
occupied investigators for many years. Since the amount of data is generally not sufficient to 
discriminate conclusively between various models, a “defect-tolerant-approach” was used to 
postulate a suitable model. The two-parameter Weibull distribution was adopted since it can 
be deduced from a statistical distribution of crack initiating defects. Parameter estimation is 
carried out based on a large quantity of experimental high cycle fatigue data, which can be 
used in the context of reliability studies and quantification of the size effect. The Weibull 
shape parameter was estimated and found to be presented approximately by a Normal 
distribution. The Weibull scale parameter was suggested to be modelled as a deterministic 
value. 

 

Introduction 
One important problem, which was discovered at an early stage of the fatigue research, is the 
scatter in fatigue strength or fatigue life. Even if great effort has been made to create similar 
experiments, the results still exhibit significant scatter and it becomes desirable to use 
statistical theory. One of the first attempts in this direction was made by Weibull [1]. Based 
on weakest-link theory he stated the probability distribution which bears his name. The basic 
premise for the model is that all materials contain inhomogeneities which are distributed at 
random with a certain density per unit volume. Examples of such inhomogeneities are non-
metallic inclusions, which in this paper are referred to as defects. When the defects become 
the fracture origin, it is found that fatigue failure is triggered by the largest defect present. In 
this framework, some other assumptions are also worth noting: (a) the largest flaw or the 
weakest-link of material provides the crack initiation site, (b) the size of defects is small 
compared with the distance between them (no interaction) and (c) failure is defined as the 
first failure of any element, i.e. a serial system is postulated. Further, the Weibull distribution 
enables to take into account the influence of load, component cross-section and component 
size on the fatigue strength. Viewed from this standpoint, the two-parameter Weibull 
distribution was chosen to describe the scatter observed in constant amplitude high cycle 
fatigue. 

This study comprises to the application of the weakest link theory together with a 
presentation of estimated distribution parameters. The estimates are obtained from high cycle 
fatigue test specimens loaded in tension or rotating bending. The results obtained in this study 
allow a quantification of the size effect [2-4] and estimation of reliability when the loading 
can be regarded as deterministic. 
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Weakest-link theory 
Probability of failure at a given number of cycles 
The uniform gauge length of a standard smooth fatigue specimen has the volume V0. It is 
subjected to a homogeneous stress of amplitude s. If the stress is multiaxial, all stress 
amplitudes have to be understood as equivalent stresses. Defects are considered to be 
randomly distributed within the specimen with a finite density per unit volume. The volume 
can be divided into many small volume elements dV, such that the probability of finding 
more than one defect is small. It is assumed that defects can be located in any of these 
volume elements, with the occurrence being independent of each other. Then the probability 
of finding a defect in dV is proportional to dV when the volume element is small, and may be 
written as 

d d=P V ,λ   (1) 

where λ is a positive function. Let D denote the number of defects located in the volume V0. 
The probability ( )=P D d  is then a Poisson process with rate λ [5]. From the property of the 
Poisson distribution it follows that λ is the number of defects per unit volume, which causes 
failure at a stress equal to, or less than s, i.e. ( )sλ . According to Weibull’s weakest link 
theory, the probability of survival of the homogeneously stressed volume V0 is given by the 
probability that all the m = V0/dV volume elements survive, i.e.   
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and when m increases infinitely, while dV decreases at the same time, the expression becomes 
an exponential function given by  

( )( )0exp= −SQ sλ V .    (4) 

According to Weibull [1] the rate λ(s) can be approximated by a power rule model written as 
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where  and b*
0s s are the Weibull scale and shape parameters, respectively. Introducing 

equation (5) into equation (4) enables the probability of survival to be written as a two-
parameter Weibull distribution: 
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When , the probability of survival is equal to 36.8 per cent. For an arbitrary component 
of homogenous material it may be shown that the component’s probability of survival is 
found by integration of the stress over the volume V [1]: 

0= *s s
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Introducing the net nominal stress snet, the component’s probability can be rewritten as 
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For convenience the Weibull stress factor KW is introduced 
1

W
net

1⎧ ⎫⎛ ⎞⎪ ⎪= ∫⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

ss
/ bb

V

sK d
V s

V ,     (9) 

 which allows equation (8) to be written as 
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Therefore, the fatigue strength  of an arbitrary component of volume V at the same 
number of cycles and probability of survival as a standard specimen of volume V

nets
0 and fatigue 

strength  is given by net, 0s
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The nominator of this expression may be interpreted as the fatigue notch factor of the 
component, 

( )1
f W 0= s/ bK K V / V .     (12) 

From the definition of KW follows that it is always less than the theoretical stress 
concentration factor Kt. 

 

Probability of failure within n cycles 

Consider now the fatigue life N as a random variable, evaluated at a given stress of amplitude 
s and mean stress sm. When the distribution of fatigue strength FS = 1-QS is given and the     
S-N-curve can be described by a power relationship (Basquin’s equation) 

=mNS C,    (13) 

the cumulative distribution function of fatigue life FN is implied. That is, one can transform 
FS by the S-N equation to obtain FN mathematically as 
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where the shape parameter bn and scale parameter  is related to b*
0n s and  through the 

following equations: 
0
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The relationship between n and V is then obtained by equating the survival probabilities for 
varying volume, i.e. 
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where bn determines the extent to which the fatigue life varies with the volume. 

 
Experimental investigation 
Above, distribution functions were presented for the fatigue strength and fatigue life by 
means of theoretical considerations. Each of these distribution functions contains two 
parameters, usually denoted as the scale parameter and the shape parameter. In the following, 
estimates of the shape parameters are presented, obtained from a large quantity of high cycle 
fatigue data. Only data with fatigue lives greater than fifty thousand cycles were considered. 
The parameters associated with the distribution of fatigue life were estimated only from 
complete samples, while it was decided to consider both complete and censored samples for 
the fatigue strength distribution. 

Fatigue test data were given in one of the following categories: (a) fatigue data by using 
several specimens at one or more stress levels and (b) fatigue data obtained by the staircase 
method [6-8]. Smooth and notched standard specimens as well as large smooth and notched 
specimens have been considered. The data have been grouped by loading types, specimen 
forms, type of material and references to the literature in Table 1. All specimens considered 
were tested in a standard laboratory environment. 

 

Moment estimators for Weibull parameters 

A data set consisted of nominally identical specimens tested at the same load level or by 
means of the staircase method. For each data set of size k, the parameters of a two-parameter 
Weibull distribution were determined by means of the classical methods of moments [9]. 
When several identical specimens were tested at two different stress levels, but close to each 
other, Weibull quantiles [9] were used to obtain estimates of the shape parameter associated 
with the fatigue strength distribution. Each estimate was also checked from the observation 
traced on the Weibull probability paper [9]. 

 

Estimation of the shape parameter 

The representation in subsequent figures is worth noting. The ordinate is the estimated mean 
probability, obtained from order statistic by sorting the estimated values according to 
increasing magnitudes. The cumulative probability of the ith estimated shape parameter can 
then be calculated as 
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where k is the sample size. The abscissa is the estimated shape parameter sb  or  as defined 
in equations (6) and (14), respectively. 

nb

TABLE 1 Summary of fatigue specimens. 

Material Designation Specimen 
shape1

Loading2 Specimens Ref. 

Forged steel, 
Fig. 1a and Fig. 2a 

30CrNiMo8, 36CrNiMo6, SS 1650-
01, JIS SF 50, X2CrNi19 9, 0.21%C 

SM & RD AX & RB 950 [8, 10-16] 

 30CrNiMo8, SS 1650-01  NT AX & RB 530 [10-11, 16]

      

Cast steel, 
Fig. 1b 

JIS ScMn 2A, 500-7/ISO 1083, 
300/ISO 185, 250/ISO 185  

SM & NT AX & RB 128 [8, 12] 

      

Aluminium alloys,  AlZnMgCu1.5, 6061-T6 SM & NT AX 415 [15, 17] 

Fig. 2b      

1SM, smooth specimen; RD, hourglass specimen; NT, notched specimen 
2AX, axial loading; RB, rotating bending 

 

The data sets for the forged steel specimens were analysed first. To access the dependence 
on the estimated shape parameter on specimen geometry, the data sets were divided into two 
groups. The first group consisted of smooth and hourglass specimens, while the other group 
consisted only of notched specimens.  

The distribution of the estimated shape parameter sb  is shown in Fig. 1a for a variety of 
forged steels subjected to either axial loading or rotating bending, as indicated in Table 1. 
The total number of points in Fig. 1a is 53, equal to the number of data sets. Each data set 
consists of 6 to 50 nominally identical specimens. For both groups it was observed that the 
estimated values could be approximated by a Normal distribution [9] with parameters µ and 
σ, i.e. mean and standard deviation. The sample mean value for the smooth and hourglass 
specimens was found to be slightly larger than the corresponding value for the notched 
specimens, as has also been observed by Tanaka et al. [18]. The sample mean value was 
determined as the average of the estimated values. Fig. 1a shows that the estimated mean 
value was 27 for smooth and hourglass specimens, while 21 was found for the notched 
specimens. This implies that the scatter in fatigue strength is less for smooth and hourglass 
specimens than for notched specimens.  

In order to be able to study the effect on material on the shape parameter it was further 
decided to estimate the distribution parameters for cast steels. For cast steels too few data sets 
were found in the literature to make a distinction between smooth and notched specimens. 
Thus, both smooth and notched specimens were assumed to belong to a single population. As 
for the forged steels, it was observed that the estimated values could be approximated by a 
Normal distribution as shown in Fig. 1b. The estimated sample mean value for the cast steels 
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was found to be  a lower estimated value than for the forged steels shown in Fig. 1a. 
This is supported by Beretta and Murakami [19], who found that the probability of finding a 
critical defect in a given volume is larger for cast steels compared with forged steels. It 
should further be mentioned that the specimen volume and the value of the shape parameter 
was found to be uncorrelated. 

14 8≈sb . ,
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FIGURE 1. Distribution of the estimated shape parameter bs for (a) forged steels and (b) 
cast steels.  

Consider now the distribution of fatigue life as expressed in equation (15) with the 
associated shape parameter denoted by bn. The distribution of the estimated shape parameter 
is shown in Fig. 2a for forged steels. Due to limited data sets for the notched specimens it was 
assumed that smooth, hourglass and notched specimens belong to a single population. As for 
the fatigue strength distribution, it was observed that the estimated values could be 
approximated by a Normal distribution. The estimated mean sample value was found to be 

 Fatigue data for aluminium alloys have also been collected to be able to establish 
estimates of the shape parameter b

5 2≈nb . .
n as shown in Fig. 2b. From this figure the value of the 

estimated mean sample value is 4.6. 

So far only the shape parameter has been considered. This is due to the fact that the scale 
parameter can be found when the shape parameter is known. Although some uncertainty may 
be associated with this simplification, it is practical to consider both  and  as 
deterministic values. The relation between the scale and shape factor can be obtained when 
the mean fatigue life or fatigue strength is known. By equating the sample mean value with 
the expected value of the Weibull distribution, the relation between the shape parameter b

0
*n 0

*s

n 
and scale parameter  can be expressed as 0

*n
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where Γ(.) denotes the gamma function. The same expression is also valid for the relation 
between  and b0

*s s. 
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FIGURE 2. Distribution of the estimated shape parameter bn for (a) forged steels and (b) 
aluminium alloys.  

 
 
Conclusions 
Based on the literature data reviewed, and on the analyses presented in this paper, the 
following conclusions are drawn. 

1. The basic assumption of the Weibull model is the existence of a statistical distribution of 
defects in the volume. 

2. Based on the Weibull distribution a statistical quantification of the size effect can be 
deduced. 

3. The weakest-link approach can be used to estimate the probability of failure for a generic 
component from a standard smooth fatigue specimen. 

4. The estimated shape parameter bs for cast steels is less than for forged steels, due to the 
greater probability of finding a larger defect in a cast steel. 

5. It is found that the shape parameter for the fatigue strength distribution is grater than the 
shape parameter for the fatigue life distribution. 
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