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Abstract 
By using a principle of least energy and a Barenblatt-type surface energy assumed as a 
smooth function of the jump of the displacements, we prove that it is possible to predict the 
onset of cracking by searching relative minima of the total energy of a body, the yield 
criterion depending on the choice of the energies. These types of brittle fracture models are 
then tested numerically by using cohesive elements. 

 

1. Introduction 
It is known, see Francfort and Marigo [1], that the linear fracture Mechanics based on 
Griffith's hypotheses relative to the surface energy (the surface energy associated to a surface 
of discontinuity is proportional to the area of this surface) and on the criterion formulated in 
terms of the critical energy release rate is (generally) unable to predict crack initiation in an 
initially sound elastic structure.  

One of the remedies proposed by Francfort and Marigo was at first, while keeping 
Griffith's hypothesis on the surface energy, to replace the criterion of propagation by a 
principle of least energy (Griffith revisited). This principle, along with numeric adapted 
methods (see Bourdin et al. [2]), allows to widen the frame of application of Griffith's theory 
and is able to predict initiation and propagation of cracks following a priori non restricted 
space-time paths : multi-cracking, brutal propagation, branching, … . In counterpart the seek 
of global minima leads to non-admissible defects like spurious size effects or the inability of 
the material to sustain body forces. Moreover, considering only local minima is (almost) 
equivalent to Griffith’s criterion and its incapacity to predict the initiation. 

As a remedy, we propose to change the form of the surface energy by adopting 
Barenblatt’s idea. In the spirit of what happens at an atomic scale when atomics bonds break 
we will assume that the surface energy depends on the value of the displacement jump 
through the crack. This approach corresponds to the cohesive zone models (CZM) frequently 
developed in the literature. With this change of the form of the energy and the seek of local 
minima we remedy to the main defects of Griffith's theories (original or revisited). It is at 
least what suggest analyses in dimension one made by Del Piero and Truskinovsky [4] or by 
Charlotte et al. [3] where it is shown that one of the necessary conditions of local minimum is 
that, in each sound point of the structure, the stress is lower than a critical stress 
corresponding to the derivative (with regard to the displacement jump) of the surface energy 
at zero. In other words the principle of local minimum applied in the case of a surface energy 
of Barenblatt’s type leads to a yield criterion formulated in terms of the stress tensor. 
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We suggest here to generalize this result for three-dimensional structures. This is the 
object of the following section. We will then present the numerical implantation of this type 
of model by using cohesive elements. Finally this brittle fracture model will be tested 
numerically on a few configurations of fracture. 

 

2. Surface energy and yield criterion 
We consider three-dimensional homogenous isotropic brittle bodies. The energy sE  
necessary to create a surface of discontinuity Γ  of normal n and through which the 
displacement undergoes a discontinuity δ  is, by following the idea of Barenblatt :  

( , )sE nϕ δ
Γ

= Γ∫ d  

where ϕ  is a concave function, vanishing if 0δ =  and growing towards the tenacity  
when the jump displacement 

cG
δ  tends to infinity. Moreover, for an isotropic material, the 

function surface energy ϕ  has to satisfy the condition ( , ) ( ,n )nϕ δ ϕ δ=Q Q  for any 
orthogonal matrix Q . By decomposing the jump displacement in a normal and a tangential 
part : tn nδ δ δ= ⋅ + , 0t nδ ⋅ = , the surface energy can read as : 

( )( , ) , tn nϕ δ φ δ δ= ⋅  

To prevent the interpenetration of the lips of the crack we impose 0nδ ⋅ ≥ . Finally we 
suppose that ( )0,0 0φ =  and that the derivative of φ  at ( )0,0  is defined by :  

(
0

1lim ( , ) ,
h

h h
h

)φ α β ψ α β
→ +

=   with ψ  positively homogeneous of degree 1. 

Let us consider such a structure submitted to a given load. The state of this structure is 
characterized by the displacement field u and the stress field σ  (cracks are identified with the 
surfaces of discontinuity of u and thus known once u is known). A necessary and sufficient 
condition so that the state of the structure is a locally stable equilibrium state is that it is a 
local minimum of the energy. In other words, there exists a neighbourhood (according to the 
chosen norm) of u such that the energy of the structure in this state is less than the energy of 
the structure in any other admissible field v in this neighbourhood. 

The energy of the structure is constituted here by three terms : the elastic energy (defined 
on the sound zones of v), the surface energy (defined on the surfaces of discontinuity of v) 
and the potential of the dead loads 

vS

( )f v  : 

( ) ( ) ( )v v v dx
Ω

Ε = ⋅Aε ε ( ), (
vv

t

SS

v n v d f vφ+ ⋅ Γ −∫ ∫ v)   with  : jump of v 

From a mathematical point of view, the most convenient space of displacement fields is 
the space of bounded variation which gives the norm used in the condition of local minimum. 
However, in this paper, we will limit our attention to piecewise smooth displacement fields. 
Thus the condition of local minimum for u reads as : 

0 : ( ) (r v v u r E u E∃ > ∀ − ≤ < )v  
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The necessary condition so that u is a local minimum, called optimality condition of first 
order (OC1), formally reads as  for any admissible direction v. From classic 
arguments of calculus of variations, we deduce that the OC1 are equivalent to the following 
local conditions : 

0))((' ≥vuE

(a) Equilibrium equations : 0 \ udiv f in S+ = Ωσ   

(b) Boundary condition : Fn F on ∂= Ωσ  

(c) Jump condition :  ( ) ( ),1 ,2, , t
t t

t

n n n n on uS
δ

φ δ δ φ δ δ
δ

= ⋅ + ⋅σ  

(d) Yield criterion :   ( ), , , : 1 un n n n n n inν ψ ν ν ν ν ν⋅ ≤ ⋅ − ⋅ ∀ ∀ = = Ωσ \ S  

with ( )u= Aσ ε  and . u u uδ + −= = −

Depending on the properties of the derivative of φ  at ( )0,0  we will find different types of 
yield criteria. 

- If φ  is differentiable at  : ( )0,0 ψ  is linear and we have ( ), c cψ α β σ α τ β= + , cσ and 

cτ  being characteristic stresses of the material. The yield criterion (d) becomes : 

, , : 1 \c c un n n n n n inν σ ν τ ν ν ν ν⋅ ≤ ⋅ + − ⋅ ∀ ∀ = = Ωσ S  

which can be written in term of principal stresses { } 1,3i i
σ

=
 :  

1 3 1 , 3
sup supi c i j c

i i j
andσ σ σ σ

≤ ≤ ≤ ≤
≤ − τ≤ . 

It’s a criterion on both maximal traction and maximal shear : 

- If φ  is not differentiable at ( )0,0  : When φ  admits only directional derivatives at 

, ( )0,0 ψ  is no more linear. By using Legendre transform, it appears that the criterion 
(d) is of intrinsic curve type, the maximal shear stress decreasing monotonically with 
the normal stress. It depends only on the extreme principal stresses 1σ  and 3σ  and can 
be written :  

1 3
1 3 2 0

2
σ σ

σ σ ψ∗

+⎛ ⎞− + ≤⎜ ⎟
⎝ ⎠

   with    ( )
[ ]

( ){ }
0, 2

sup cos cos ,sins s
ω π

ψ ω ψ ω ω∗
∈

= −  

The difference in comparison to Griffith's theory lives in the conditions (c) and (d). For 
Griffith’s theory, the first one would read 0n =σ , which implies the absence of interaction 
between the lips of cracks, while the second one would be : G ≤Gc  the famous Griffith 
criterion which is global and no more local. We see that with a Barenblatt’s surface energy 
type, the lips of the cracks interact, which correspond to the notion of cohesive forces. 

Remarks: The OC1 are only necessary conditions for u to be a local minimum. It is 
necessary to add to them second order conditions which are generally global ones (see [3] or 
[4]). For more details on this part see Laverne and Marigo [5]. 
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3. Numerical Model 
One of the main difficulties of numerical implantation of such models lives in the necessity to 
suppose a priori any surface of discontinuity in the structure. This difficulty had been by-
passed in the revisited Griffith theory by making an "elliptic regularization" of the energy 
which allowed to work with regular fields (see [2]), the discontinuities being replaced by 
strong gradients. Such a process of regularization is not available yet for Barenblatt’s surface 
energies. We have therefore opted for an implantation (in two dimensions) by cohesive 
elements with internal discontinuities. In other words we suppose the crack path is known a 
priori. 

 

3.1  Choice of the surface energy 
We choose a density of surface energy depending only on the norm of the jump displacement 
and, on this fact, independent of the orientation n of the discontinuity line : 

( , ) 1 exp c
c

c

n G
G
σ

ϕ δ δ
⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

We note that it’s a concave function of the norm of the jump displacement, starting from zero 
and progressively growing to the tenacity  (see [3]). cG

 

3.2  Choice of the cohesive element 
The element is a quadrangle with an internal discontinuity noted [AB] which is located at the 
centre of the sides [1-4] and [2-3] (see Fig. 1). It allows to define a local mark in the element : 
n and t are respectively a normal and a tangent unit vector to the discontinuity line. The main 
idea consists in considering the jump of displacement in the element, denoted ( ),n tδ δ δ= , as 
a constant “internal” variable. Moreover we consider that the normal jump nδ  cannot be 
strictly negative to take into account the condition of non-interpenetration of the crack lips.  
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FIGURE 1. Geometry of the cohesive element. 
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3.3  Numerical solving 
By using a principle of least energy the solution of the problem consists in finding the 
displacement field as well as the jumps in each cohesive element. 

Minimisation problem : find ( ) ( )( )
,

, arg min ,
U

U E
δ

Uδ δ∗ ∗ =  

Numerically, the seek for a local minimum of the total energy at a given level of loading 
will be made in two steps : successive minimization with respect to the jump then with 
respect to the displacement. 

Remark : in this part we will detail only the computation of the jump in a cohesive 
element for the onset of cracking. The calculation of the jump for propagation is similar. We 
take into account the irreversibility of cracking thanks to a threshold variable. 

• First step : Determination of δ  for a fixed . Thanks to the choice of U δ  constant by 
element, a local analysis is sufficient to determine δ  in every element according to the 
displacement. Indeed, for given U , δ  will be a minimizer of the element total energy. 
Supposing that the element is free of body forces, its energy reads as (with matrix notations) : 

( ) ( )1( , ) 1 exp
2

T c
cV

c

E U U U dV LG
G
σ

δ δ δ
⎛ ⎞⎛ ⎞

= − − + − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫ AB D B D δ  

the first term corresponds to the elastic energy (the strain ε  read as U δ= −B Dε  and the 
stress = Aσ ε ) and the second one to the surface energy (L is the length of the discontinuity 
line AB on Fig. 1). E is a strictly convex function of δ  as long as the size of the element is 
small enough, which fixes the maximal mesh size. There is then a unique minimum. We 
obtain (by noting { 0,xMaxx =+ }) :  

If ( ) ( )
2 2 2 2T T T T

cn U t U L σ
+

+ ≤A AD B D B  , then 0=δ . It corresponds to the onset 

criterion (d) in part 2. Otherwise the jump reads as : 

exp exp

T TT T

T T T Tc c
c c

c c

n Ut Ua t
t t a L a n n a L a

G G

δ
σ σ

σ σ

+

⎛ ⎞
⎜ ⎟
⎜ ⎟= +⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

AA

A A

D BD B

D D D D
n  

with solution of the following non linear scalar equation : 0a >
2 2

1
exp exp

T TT T

T T T Tc c
c c

c c

n Ut U

t t a L a n n a L a
G G
σ σ

σ σ

+

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜= +⎜ ⎟ ⎜⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜+ − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

AA

A A

D BD B

D D D D

⎞
⎟
⎟
⎟
⎟⎟
⎠

 

• Second step : Determination of U. Once δ  is determined in every cohesive element 
according to the displacement, we solve the discrete equilibrium equation (equivalent to (a) 
and (b) in part 2) U F=K  where , the vector forces, must be updated to take into account 
stresses associated to 

F
δ  in cohesive elements. 

• Iterations : For a given load level, the two steps are iterated : from an initial vector  
we build, until convergence, a sequence 

0U
( ),i iUδ  with a global Newton-Raphson algorithm. 
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4. Simulations 
 

4.1  Validation test 
The aim of this test case is to validate the numerical model by confronting it with an 
analytical solution. Let us consider a crack along which the jump displacement is not 
constant. The idea is then, in addition to a good prediction of the jump, to notice a decrease of 
the numerical error when we refine the mesh. 

We consider a two-dimensional rectangular elastic plate Ω  and Γ one of its sides. The 
Airy stress function ( ),x yΦ , governed by the equation : 0∆∆Φ =  on Ω , when body forces 
vanish, generates stresses that satisfy the equations of equilibrium and compatibility (see 
Fung [8]). In this case ,xx yyσ σ and xyσ  are derived from ( ),x yΦ  according to the 
following equations :  

2 2

2 2,xx yy xyand
2

x yy x
σ σ σ∂ Φ ∂ Φ ∂ Φ

= = = −
∂ ∂∂ ∂

 

Let’s chose a biharmonic function ( ),x yΦ  such that the stress tensor reads as : 

0
xx

yy

xy

x y

y

σ α β
σ

σ α η

⎧ = + +
⎪

=⎨
⎪ = +⎩

γ
     with , ,α β γ  and η  arbitrary constants. 

For a Young modulus : 1E =  and a Poisson’s ratio : 0ν =  we deduce the displacement 
field in the plate (and in particular the boundary conditions on ∂Ω ) : 

( ) ( )

( )

2
2

2

,
2

, 2
2

xu x y y x y

xv x y x

α β γ

β η

⎛ ⎞
= + + +⎜ ⎟

⎝ ⎠

= − +

 (1) 

Furthermore, knowing the vector .nσ  on Γ , we can deduce the jump  on S Γ , 
corresponding to such a force, by inverting Barenblatt’s law. The new prescribed 
displacement on , generating such a jump, thus reads as : Γ 0U U SΓ Γ= −  (with 0UΓ  the 
prescribed displacement on  given by (1)). So we build an analytical solution of the elastic 
plate containing a crack along which the jump displacement is not constant.  

Γ

Finally, for the numerical simulation, we put cohesive elements along Γ , we apply a 
displacement  on UΓ Γ  and a displacement given by (1) on ∂Ω Γ . Let us note  the 

numerical solution for the jump. We notice that the numerical error 

numS

( )2

num

L
S S

Γ
−  decreases 

when we refine the mesh (see Fig. 2). 
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FIGURE 2. Error vs. number of cohesive elements (logarithmic scale). 

 

4.2  The pull-out problem 
This study concerns a cylindrical beam composed of two parts : a matrix with cross circular 
section reinforced by a fibre immersed on its centre. The matrix is assumed to be linear 
homogeneous isotropic material with an elastic behaviour while the fibre is taken rigid. The 
beam is clamped on its lateral surface, while a longitudinal displacement  is prescribed at 
the top of the fibre. Cohesive elements are located everywhere in the matrix so that we 
authorize only longitudinal debonding (see Fig. 3). 

iU

Moreover a technique of path-following of the load was developed to take into account a 
possible brutal opening of the cracks see Badel and Lorentz [7]. It allows to follow the 
unstable branches of the global response of the structure.  

The numerical simulation leads to a debonding at the interface Matrix / Fibre on all the 
height of the beam. The results are validated by comparing the numeric curve of the global 
response with the analytical solution (see Fig. 4). 

 
iU  
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x

 

Fibre

Matrix 
Cohesive elements 

Fixed boundary 
 FIGURE 4. Global response of the beam. Interface Matrix / Fibre 
 Force vs. prescribed displacement. 
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 FIGURE 3. Geometry of the beam. 

4.3  Crack propagation through a perforated plate 
This study concerns the simulation of crack propagation through a perforated plate which is 
submitted to a prescribed force Fi applied on both ends, see Fig. 5. By postulating a priori the 
potential crack paths, we put cohesive elements along the symmetry line A-A’ right and left 
from the hole. Global response and displacement field are given in Figs. 6-7. 
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iF

FIGURE 5. Geometry of the plate  FIGURE 6. Global response of the plate. 
and load conditions (dimension in mm). Prescribed force vs vertical displacement 
 at the top of the hole. 

 

 

 

 

 

 

 

 

FIGURE 7. Evolution of the displacement field. 

References  
1. Francfort, G.A. and Marigo, J. -J., J. Mech. Phys. Solids, vol. 46(2), 1319-1342, 1998. 

2. Bourdin, B., Francfort, G.A. and Marigo, J. -J., J. Mech. Phys. Solids, vol. 48, 797-826, 
2000. 

3. Charlotte, M., Francfort G.A. , Marigo, J. -J. and Truskinovsky L., The data science 
library, Elsevier, edited by A. Benallal, Paris , 7-18, 2000. 

4. Del Piero, G. and Truskinovsky, L., Int. J. Solids Structures, vol. 38, 1135-1148, 2000. 

5. Laverne, J. and Marigo, J. -J., Académie des Sciences C.R. Mécanique 332 (2004). 

6. Laverne, J., Lorentz, E. and Marigo, J. –J., In Proceedings of the 16th French Congress of 
Mechanics Nice 2003. 

7. Badel, P.-B. and Lorentz, E., In Proceedings of the 16th French Congress of Mechanics, 
Nice, 2003. 



ECF15 

8. Fung, Y.C., Foundations of Solid Mechanics, Prentice-Hall, 1965. 


