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Abstract
An experimental investigation on drilled cylindrical concrete specimens in compression over
a large scale range (1:19) has been carried out to evaluate the variation of some mechanical
parameters by varying specimen size. The peculiarity of thepresent investigation consists
in exploring very small specimen dimensions. The experimental results show scale effects
on dissipated energy density rather than on uniaxial compressive strength. A theoretical
explanation for such a phenomenon, based on the fractal hypothesis, is presented and a
comparison between experimental and theoretical values isdiscussed.

Introduction

Scale effects have received a strong interest in the last fewdecades. With the termscale
effects both the variation of mechanical parameters as well as the variation of failure mode by
varying the characteristic structural dimension (ductileto brittle transition) are considered.
In tension, the phenomenon has been deeply discussed and important conclusions have been
set. In particular, the variation of tensile strength was considered with the formulation of
different laws. Bažant [1] defined the so-called Size Effect Law in the hypothesis of the
presence of an initial crack of length proportional to the specimen size. This law has been
often used in the literature. Successively, Carpinteri [2,3] and Carpinteri et al. [4] proposed
the Multifractal Scaling Law, valid for initially integer specimens and components. On the
other hand, the compression failure is more complex and the related size effects are less
understood.

The brittle failure in compression has been widely studied over the last decades. The
phenomenon of axial splitting in the absence of confinement,as well as the related phe-
nomena of exfoliation or sheet fracture, has been analyzed by Holzhausen and Johnson [5],
by Nemat-Nasser and Horii [6] and by Ashby and Hallam [7]. Horii and Nemat-Nasser
[8] have modeled the transition from brittle failure to ductile flow under very high confining
pressures, by considering possible zone of plastically deformed materials at high shear-stress
region around preexisting flaws. An interesting overview ofbrittle failure in compression can
be found in [9].

The variation of the compressive strength with size and height-diameter (or slenderness)
ratio is relevant when the rigid test machine platens are in direct contact with the concrete
specimen, the lateral deformation of concrete being restrained at the specimen ends. In this
context, a wide investigation has been carried out by Carpinteri et al. [10]. When, instead,
the friction at the specimen ends is reduced, the strength variation is less evident [11].

An experimental investigation on geometrically similar cylindrical concrete specimens,
obtained by a unique concrete block in compression over a very large scale range (1:19),
will be brifly reported [12] and the obtained scale effects will be herein discussed. It will



be shown how, avoiding friction, the strength is almost independent of specimen dimension
while strong variations are observed for dissipated energydensity (DED). This phenomenon
is interpreted by considering the fragmentation and the comminution theories. In this field,
Fractal Geometry represents a very helpful tool to explain such a phenomenon.

Experimental investigation

The ambition of testing concrete specimen in compression ina very wide size range im-
pacts strongly with the set-up, which opposes physical limits. The fundamental idea was to
use a very simple standard testing apparatus composed only by a closed-loop servo-hydraulic
system and strain gauges glued on the specimen to record the longitudinal as well as the
transversal deformation in the pre-peak part of the force versus displacement curve.
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Figure 1: (a) Geometries of the five different concrete specimens; (b) overall view of the five specimen sizes.

All the cylinders were obtained by drilling from a unique concrete block with sizes 800
× 500×200 mm. The microconcrete used for the specimens is characterized by a maxi-
mum aggregate size of 4 mm . Five different diameters were considered in relation to the
disposable drilling core-bits in a scale range of 1:19. The specimens were cylinders with a
height/diameter ratioh/d =1 andd chosen as the characteristic dimension equal to 10, 23,
45, 100, 190 mm, respectively. Six specimens have been tested for d= 10 (C1), 23 (C2) and
45 (C3) mm and four specimens ford= 100 (C4) and 190 (C5) mm. The geometries of the
tested specimens are presented in Fig. 1.a. The geometricalcharacteristics are reported in
Ferro [12]. The nominal strength is 51.8 N/mm2 while the compression strength of cube
(150× 150× 150) after 28 days was equal to 33 N/mm2. The water-cement ratio was equal
to 0.65.

In uniaxial compression tests it is well-known how the boundary conditions play an impor-
tant role. The system adopted in the present compression tests comes out from the analysis
of the RILEM Technical Committee 148 SSC results [13] and consisted in using two teflon
layers of 150µm thickness with oil in between and a specimen slenderness equal to one.

The stress-deformation curves (Fig. 2.a) show an initial steadily increasing slope, due to
the lower stiffness at the beginning of the test. After this initial part, the stress-strain path is
nearly linear and this linear part is as more pronounced as larger the specimen is. The smaller
the specimen, the more pronounced pre-peak nonlinearitiesare. After the peak stress, a grad-
ual descending branch has been detected. The slope of the descending branch decreases with
decreasing specimen height.
The values of the peak-stresses, which are commonly calledcompressive strength, are re-
ported in Fig.2.b by varying specimen sizes. A marked size effect does not come out, as
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Figure 2: (a) Stress-strain curves for four different sizes; (b) peak-stresses by varying specimen size.

instead can be evidenced in tension [14] or in compression when localization is present [10].
The scatter in the results is not pronounced and even for the smallest size the values are com-
parable to the compressive strength of standard cubes. Thispermits to affirm that, if friction
is avoided or drastically reduced, the compressive strength of an extisting concrete structure
can be evaluated using very small drilling core specimens.

Fractal approach for the variation of DED with size

The performed compression tests have shown an evident decrease of dissipated energy
density with increasing specimen dimension (Fig. 4). This interesting phenomenon can be
interpreted by considering the fragmentation and the comminution theories. In this field,
Fractal Geometry represents a very helpful tool. Fragmentation involves initiation and prop-
agation of fractures. Fracture propagation is a highly nonlinear process requiring complex
models even for the simplest configuration. Fragmentation involves the interaction between
fractures over a wide range of scales. If fragments are produced over a wide range of sizes
and if natural scales are not associated with the fragmentedmaterial, fractal distribution of
number versus size would seem to be expected. The statistical number-size distribution for
a large number of objects can be fractal [16].

Let us consider a concrete specimen which undergoes a compression test. In the post-
peak softening regime the specimen is characterized by the generation of a large number
of fragments. After fragmentation, the number of fragmentsN with a characteristic linear
dimension greater thanr should satisfy the relation:

N =
B

rD
, (1)

whereB is a constant of proportionality, andD is the fractal dimension.
In order to describe the mechanical meaning of the fractal exponentD, in Fig.3 some

examples of discrete fragmentation model are presented, where fragmentation is a scale-
invariant process that leads to a fractal distribution of chip sizes. We consider a fractal cube
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Figure 3: Physical meaning of exponentD; (a) at each step only one cube is retained, while all the others are
divided into 27 equal-sized cubes withrn=1

3
rn−1 (D=2.93), very close to a volumetric fragmentation; (b) at

each step the eight angular cubes are retained, while all theothers 19 are divided into 27 equal-sized cubes
with rn=1

3
rn−1 (D=2.70);(c) and (d) at each step the nine cubes are divided into 27 equal-sized cubes with

rn=1

3
rn−1, while the others 18 are retained (D=2.00), showing a localization of the dissipation energy; on the

rigth cumulative statistics for the proposed fragmentation models.

and use it as the basis for a fragmentation model. The fragmentation is such that some blocks
are retained at each scale but others are fragmented. In order to determineD, eq.(1) can be
written as:

D =
log(Nn+1/Nn)

log(rn/rn+1)
, (2)

and then we can find for the three casesD = log 25/ log 3 = 2.93 (Fig.3.a),D = log 19/ log 3 =
2.68 (Fig.3.b) andD = log 9/ log 3 = 2.00 (Fig.3.c,d), respectively. This is the fractal dis-
tribution of a discrete set. The cumulative number of blockslarger than a specified size for
the three highest orders areN1c = 2 for r1 = h

3
, N2c = 52 for r2 = h

9
andN3c = 1302 for

r3 = h

27
, obtaining a valueD = 2.95 for the first example;N1c = 8, N2c = 160, N3c = 3048

andD = 2.70 for the second example;N1c = 18, N2c = 180, N3c = 1638 andD = 2.05 for
the last two. The fractal dimensions for the discrete set andfor the cumulative statistics are
nearly equal.

ConsideringW as the global dissipated energy measured by the experimental set-up,G
as the elastic energy release rate or the specific energy necessary to generate the unit area of
fracture, which is by hypothesis invariant with respect to the scale of observation, we have:

W = GA and then: G =
W

A
=

SV

A
=

Sl3

l2
= Sl. (3)

If we consider a sequence of scale of observation, we have:

G = S1l1 = . . . = Sn−1ln−1 = Snln = Sn+1ln+1 = . . . = S∞l∞, (4)

where the first scale of observation could be the macroscopicone, withS1l1 = Sl, l being
the characteristic linear dimension of the specimen, and the asymptotic scale of observation
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Figure 4: Size effect on dissipated energy density (experimental tests).

could be the microscopic one, withS∞l∞ = G∗

F
l∗, l∗ being the measure of the fractal set

representing the fragmented configuration. From the equality between the extreme members
we can write:

S = G∗

F

(

l∗

l

)

, or S = G∗

F

(

l1−dω

l

)

, (5)

where0 < dω < 1 is the decrement of the topological dimension due to nonhomogeneous
fragmentation. Taking the logarithms of both members of eq.(5), we obtain:

logS = logG∗

F
− dω log l, (6)

wheredω = 3 −D can be considered as the decrement of the topological dimension of the
set in which energy dissipation occurs. Eq.(6) represents astraight line with slope(D − 3)
in the logS versus logl plane (Fig.4). IfD = 2, the slope is−1, as well asD = 3 implies a
vanishing slope. ForD = 2 (localization)dω = 1; for D = 3 (volumetric dissipation)dω = 0.

The two extreme cases areD=2, surface theory [15], when the dissipation really occurs
on a surface (W ∝ V

2

3 ), and byD=3, volume theory [16], when the dissipation occurs in a
volume (W ∝ V ). In this caseG∗

F
presents the following physical dimensions:

[G∗

F
] =

[F ][L]−1

[L]D−2
= [F ][L]1−D. (7)

For D = 2 → [G∗

F
] = [F ][L]−1, which is the canonical dimension for fracture energy, while

for D = 3 → [G∗

F
] = [F ][L]−2, which is the physical dimension of stress. The experimental

cases of fragmentation are usually intermediate (D ∼= 2.5) [17], as well as the size distribution
for concrete aggregates due to Fuller [18].

The values of dissipated energy density for the three smallest sizes are plotted in Fig. 4.a
against the specimen size in a bilogarithmic plane. The values for the four available sizes are
instead reported in Fig.4.b. The size effect is representedby the slope of the linear regression



of the points of the diagram. It is evident how the dissipatedenergy density decreases with
increasing specimen size.

As may be observed from Fig.4, the slope of the dissipated energy density decrease proves
to be equal to 0.67 when only three specimen sizes are considered, and to 0.97 when con-
sidering the fourth size. We have considered the two different cases as the fourth size has
been tested with a different procedure which can cause variations in energy estimation. The
assumption of a fractal physical dimension allows the determination of the dissipated en-
ergy density parameterG∗

F
, which results to be independent of the scale. As it is easy to

observe, in the latter case the renormalized dissipated energy density tends to be a fracture
energy, the dissipation occurring on a fractal set very close to a 2-dimensional surface. Such
a result confirms the localization of the dissipation on a surface [19]. The fractal nature of
the fragments generated by the compressive test emerges very clearly at the size scale of
the specimens. Momber [20] applied fragmentation theory tothe study of compression and
analyzed the fragments, determining a fractal exponentD close to 2. On the other hand, the
property of self-similarity is very likely to vanish or change at higher or lower scales, owing
to the limited character of the particle size curve.

Multifractal approach

The monofractal hypothesis provides a dissipated energy density S = W/V → 0 for
l → ∞. Due to the limited validity of the self-similarity property, this is of course a physi-
cal nonsense. The same trend has been obtained in traction [3, 14], where the monofractal
hypothesis was considered for cross-sectional ligaments.In that case, the geometrical mul-
tifractality of the cross-sectional material ligament [2,4] permitted to determine the Mul-
tifractal Scaling Law for tensile strength, as well as for fracture energy [21] whenever the
geometrical multifractality for fracture surface is assumed. The topological concept of ge-
ometrical multifractality, which can be also considered asan extension of the concept of
self-affinity, may explain the inconsistencies shown in thepreceding section. A self-affine
fractal [22] is a fractal showing a different scaling law with respect to self-similarity, in the
sense that a (statistically) similar morphology can be obtained only if the lengths are rescaled
by direction-dependent factors. Such a fractal set can be identified by two different values of
the fractal dimension: a local fractal dimension, in the limit of scales tending to zero, strictly
equal to the Hausdorff topological dimension, and a global fractal dimension, corresponding
to the largest scales, equal to the (integer) topological dimension.

On the other hand, it appears more consistent to deal with a continuous variation of the
fractal dimension against the observation scale length (i.e. geometrical multifractality), than
to consider only two limit values of the fractal dimension.

According to the previous considerations, the following multifractal scaling law for dis-
sipated energy density (Fig.5) can be proposed [2, 4, 23]:

S = S∞

(

1 +
lch
l

)

, (8)

where the two material constantsS∞ andlch can be obtained from fitting the experimental
results. The physical requirements previously exposed arethus respected:
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Figure 5: Bilogarithmic diagrams of dissipated energy density versus size: (a) three sizes; (b) four sizes.

lim
l→+∞

S∞

(

1 +
lch
l

)

= S∞, lim
l→0+

S∞

(

1 +
lch
l

)

= +∞. (9)

The horizontal coordinate of the intersection point of the two asymptotesis is equal tolog lch,
with lch a characteristic length. This point ideally separates the disordered regime, where
fragmentation is not homogeneous, from the ordered (homogeneous) regime. The microstruc-
tural characteristic sizelch, in the case of normal-strength concrete, could be proportional to
the maximum aggregate sizedmax: lch = αdmax.

It is reasonable to suppose that, for finer grained brittle materials (rocks, high-strength
concrete) this value should be considerably smaller than inthe case of normal-strength con-
crete, thus providing the curve to shift horizontally to theleft in the bilogarithmic diagram.

The process, shows two asympthotes. At the smallest scales,the dissipation occurs over
a domain very close to a surface (D=2), whereas at the largest scales the dissipation occurs
over a domain close to a volume (D=3).

Conclusions

The uniaxial compression tests performed under displacement control on drilled cylin-
drical specimens obtained by a unique concrete block over a very large scale range (1:19)
have confirmed as the scale effect on compressive strength isnot as evident as in traction.
The experimental results have instead manifested a strong scale effect on dissipated energy
density, showing a sharp decrease of that quantity by increasing specimen size.

The hypothesis of energy dissipation in a sub-domain with physical dimension between 2
and 3 can be effective to justify such a phenomenon. It can be observed how, when energy
dissipation occurs in the volume (D=3) no scale effects are present, whereas when energy
dissipation occurs over an area (D=2) the scale effects are characterized in the bilogarithmic
diagram logS versus logl by a linear law with slope equal to−1. By fitting the experimen-
tal values, we obtain an intermediate case, and a renormalized value for dissipated energy
density, invariant with scale, can be obtained. This scale invariant value is characterized by



noninteger physical dimensions. This hypothesis works very well in the size range of the
tested specimens.

In order to extend the trend of the dissipated energy densityto all the size-scales, a mul-
tifractal law has been proposed, from which comes out how at small scales the failure is
dominated by a fragmentation process (D=2) with severe scale effect, while at large scales
the energy dissipation occurs in the volume (D=3) and the related scale effect vanishes.
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