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Abstract

An experimental investigation on drilled cylindrical caate specimens in compression over
a large scale range (1:19) has been carried out to evaliatathation of some mechanical
parameters by varying specimen size. The peculiarity optiesent investigation consists
in exploring very small specimen dimensions. The experialaesults show scale effects
on dissipated energy density rather than on uniaxial cosspre strength. A theoretical
explanation for such a phenomenon, based on the fractaltlwgs, is presented and a
comparison between experimental and theoretical valugisesissed.

I ntroduction

Scale effects have received a strong interest in the lastfades. With the terrscale
effectsboth the variation of mechanical parameters as well as thatien of failure mode by
varying the characteristic structural dimension (dudtldrittle transition) are considered.
In tension, the phenomenon has been deeply discussed aodamjronclusions have been
set. In particular, the variation of tensile strength wassidered with the formulation of
different laws. Bazant [1] defined the so-called Size HEftemw in the hypothesis of the
presence of an initial crack of length proportional to thesmen size. This law has been
often used in the literature. Successively, Carpinter8]zand Carpinteri et al. [4] proposed
the Multifractal Scaling Law, valid for initially integemp&cimens and components. On the
other hand, the compression failure is more complex anddladed size effects are less
understood.

The brittle failure in compression has been widely studiedrdhe last decades. The
phenomenon of axial splitting in the absence of confinemantwell as the related phe-
nomena of exfoliation or sheet fracture, has been analygédbtzrhausen and Johnson [5],
by Nemat-Nasser and Horii [6] and by Ashby and Hallam [7]. iHand Nemat-Nasser
[8] have modeled the transition from brittle failure to dietflow under very high confining
pressures, by considering possible zone of plasticallgrdefd materials at high shear-stress
region around preexisting flaws. An interesting overviewrtle failure in compression can
be found in [9].

The variation of the compressive strength with size andhtaigameter (or slenderness)
ratio is relevant when the rigid test machine platens arargcticontact with the concrete
specimen, the lateral deformation of concrete being nestdaat the specimen ends. In this
context, a wide investigation has been carried out by Ctepiet al. [10]. When, instead,
the friction at the specimen ends is reduced, the strengihtizan is less evident [11].

An experimental investigation on geometrically similafigirical concrete specimens,
obtained by a unique concrete block in compression over \a laege scale range (1:19),
will be brifly reported [12] and the obtained scale effectd & herein discussed. It will



be shown how, avoiding friction, the strength is almost pefedent of specimen dimension
while strong variations are observed for dissipated endeggity (DED). This phenomenon
is interpreted by considering the fragmentation and thensomation theories. In this field,
Fractal Geometry represents a very helpful tool to explaains phenomenon.

Experimental investigation

The ambition of testing concrete specimen in compressi@mMery wide size range im-
pacts strongly with the set-up, which opposes physicatéimihe fundamental idea was to
use a very simple standard testing apparatus composedyalgibsed-loop servo-hydraulic
system and strain gauges glued on the specimen to recordripeudinal as well as the
transversal deformation in the pre-peak part of the foresusedisplacement curve.
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Figure 1: (a) Geometries of the five different concrete speais; (b) overall view of the five specimen sizes.

All the cylinders were obtained by drilling from a unique cogte block with sizes 800
x 500 x200 mm. The microconcrete used for the specimens is chawmerteby a maxi-
mum aggregate size of 4 mm . Five different diameters wersidered in relation to the
disposable drilling core-bits in a scale range of 1:19. Tpecsnens were cylinders with a
height/diameter ratid/d =1 andd chosen as the characteristic dimension equal to 10, 23,
45, 100, 190 mm, respectively. Six specimens have beerdtésté= 10 (C1), 23 (C2) and
45 (C3) mm and four specimens fér 100 (C4) and 190 (C5) mm. The geometries of the
tested specimens are presented in Fig. 1.a. The geomein@ealcteristics are reported in
Ferro [12]. The nominal strength is 51.8 N/ranvhile the compression strength of cube
(150 x 150 x 150) after 28 days was equal to 33 N/mrithe water-cement ratio was equal
to 0.65.

In uniaxial compression tests it is well-known how the baanycconditions play an impor-
tant role. The system adopted in the present compressitsnc@®ses out from the analysis
of the RILEM Technical Committee 148 SSC results [13] andststed in using two teflon
layers of 15Qum thickness with oil in between and a specimen slenderness &mone.

The stress-deformation curves (Fig. 2.a) show an initeddily increasing slope, due to
the lower stiffness at the beginning of the test. After thisal part, the stress-strain path is
nearly linear and this linear part is as more pronouncedgsrghe specimenis. The smaller
the specimen, the more pronounced pre-peak nonlineaarge#\fter the peak stress, a grad-
ual descending branch has been detected. The slope of tendé@sy branch decreases with
decreasing specimen height.

The values of the peak-stresses, which are commonly cediegressive strength, are re-
ported in Fig.2.b by varying specimen sizes. A marked sifecefloes not come out, as
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Figure 2: (a) Stress-strain curves for four different sifbypeak-stresses by varying specimen size.

instead can be evidenced in tension [14] or in compressia@nvdrcalization is present [10].
The scatter in the results is not pronounced and even fontla#est size the values are com-
parable to the compressive strength of standard cubesp&hisits to affirm that, if friction
is avoided or drastically reduced, the compressive stheoighn extisting concrete structure
can be evaluated using very small drilling core specimens.

Fractal approach for the variation of DED with size

The performed compression tests have shown an evidentasdecod dissipated energy
density with increasing specimen dimension (Fig. 4). Thieresting phenomenon can be
interpreted by considering the fragmentation and the comtian theories. In this field,
Fractal Geometry represents a very helpful tool. Fragntiemt&nvolves initiation and prop-
agation of fractures. Fracture propagation is a highly ime@r process requiring complex
models even for the simplest configuration. Fragmentatisalves the interaction between
fractures over a wide range of scales. If fragments are mextilover a wide range of sizes
and if natural scales are not associated with the fragmenggdrial, fractal distribution of
number versus size would seem to be expected. The stdtrsticder-size distribution for
a large number of objects can be fractal [16].

Let us consider a concrete specimen which undergoes a cesipmetest. In the post-
peak softening regime the specimen is characterized byehergtion of a large number
of fragments. After fragmentation, the number of fragmeyitavith a characteristic linear
dimension greater thanshould satisfy the relation:

B
whereB is a constant of proportionality, arid is the fractal dimension.
In order to describe the mechanical meaning of the fractpbe&ntD, in Fig.3 some
examples of discrete fragmentation model are presentedreninagmentation is a scale-
invariant process that leads to a fractal distribution opclizes. We consider a fractal cube
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Figure 3: Physical meaning of expondn} (a) at each step only one cube is retained, while all therstie
divided into 27 equal-sized cubes Wiltb=%7‘n_1 (D=2.93), very close to a volumetric fragmentation; (b) at
each step the eight angular cubes are retained, while aittrers 19 are divided into 27 equal-sized cubes
with rn:%rn,l (D=2.70);(c) and (d) at each step the nine cubes are divided2intequal-sized cubes with
rn:%rn,l, while the others 18 are retaineB£2.00), showing a localization of the dissipation energytite
rigth cumulative statistics for the proposed fragmentatimdels.

and use it as the basis for a fragmentation model. The fragatienis such that some blocks
are retained at each scale but others are fragmented. IntordetermineD, eq.(1) can be

written as:
D= log(Nn+1/Nn) : (2)
log(rn/Tn1)

and then we can find for the three cages log 25/ log 3 = 2.93 (Fig.3.a),D =log 19/ log 3 =
2.68 (Fig.3.b) andD = log9/log3 = 2.00 (Fig.3.c,d), respectively. This is the fractal dis-
tribution of a discrete set. The cumulative number of bldekger than a specified size for
the three highest orders arg. = 2 for r; = % Ny. = 52 for ry = g and N;. = 1302 for
r3 = 2—’; obtaining a valueD = 2.95 for the first exampleN;. = 8, Ny. = 160, N3. = 3048
andD = 2.70 for the second examplé&y;. = 18, Ny, = 180, N3, = 1638 andD = 2.05 for
the last two. The fractal dimensions for the discrete setfanthe cumulative statistics are
nearly equal.

ConsideringlV as the global dissipated energy measured by the experihsattap,g
as the elastic energy release rate or the specific energgsagdo generate the unit area of
fracture, which is by hypothesis invariant with respectie $cale of observation, we have:

w sV SB
W =GA andthen Q_Z_T_Z—Q_Sl' 3)

If we consider a sequence of scale of observation, we have:
g= Slll == n—lln—l = Snln = n+1ln+1 == Soolooa (4)

where the first scale of observation could be the macrosaopmg¢ withS;/; = SI, [ being
the characteristic linear dimension of the specimen, aa@#ymptotic scale of observation
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Figure 4: Size effect on dissipated energy density (expantal tests).

could be the microscopic one, with /., = G5l*, [* being the measure of the fractal set
representing the fragmented configuration. From the eguadtween the extreme members

we can write:
l* ll*dw
Szgzs(j), or Szg;(T), ©)

where( < d, < 1 is the decrement of the topological dimension due to nonlgameous
fragmentation. Taking the logarithms of both members ofs9qwe obtain:

log S = log G} — d,, logl, (6)

whered, = 3 — D can be considered as the decrement of the topological dioreasthe

set in which energy dissipation occurs. Eq.(6) represestsagght line with slopg D — 3)

in the logS versus log plane (Fig.4). IfD = 2, the slope is-1, as well asD = 3 implies a

vanishing slope. Fab = 2 (localization)d,, = 1; for D = 3 (volumetric dissipationy,, = 0.
The two extreme cases afe=2, surface theory [15], when the dissipation really occurs

on a surfacelf/ o V§), and by D=3, volume theory [16], when the dissipation occurs in a

volume (¥ « V). In this cas&y}. presents the following physical dimensions:

FLL
L

For D =2 — [G}] = [F][L]~!, which is the canonical dimension for fracture energy, hil
for D =3 — [Gy] = [F][L] 2, which is the physical dimension of stress. The experinienta
cases of fragmentation are usually intermediaté<2.5) [17], as well as the size distribution
for concrete aggregates due to Fuller [18].

The values of dissipated energy density for the three ssialiees are plotted in Fig. 4.a
against the specimen size in a bilogarithmic plane. Theagdlor the four available sizes are
instead reported in Fig.4.b. The size effect is represdngede slope of the linear regression

GF] = = [F][L]". (7)



of the points of the diagram. It is evident how the dissipaedrgy density decreases with
increasing specimen size.

As may be observed from Fig.4, the slope of the dissipatedjgmensity decrease proves
to be equal to 0.67 when only three specimen sizes are coedidend to 0.97 when con-
sidering the fourth size. We have considered the two diffecases as the fourth size has
been tested with a different procedure which can causeti@argin energy estimation. The
assumption of a fractal physical dimension allows the deiteation of the dissipated en-
ergy density paramet&f;., which results to be independent of the scale. As it is easy to
observe, in the latter case the renormalized dissipatedgensity tends to be a fracture
energy, the dissipation occurring on a fractal set veryectosa 2-dimensional surface. Such
a result confirms the localization of the dissipation on dasr [19]. The fractal nature of
the fragments generated by the compressive test emergeslearly at the size scale of
the specimens. Momber [20] applied fragmentation theothéostudy of compression and
analyzed the fragments, determining a fractal exponkalose to 2. On the other hand, the
property of self-similarity is very likely to vanish or chga at higher or lower scales, owing
to the limited character of the particle size curve.

Multifractal approach

The monofractal hypothesis provides a dissipated energgiyeS = W/V — 0 for
[ — oco. Due to the limited validity of the self-similarity propgrtthis is of course a physi-
cal nonsense. The same trend has been obtained in tractitd][3vhere the monofractal
hypothesis was considered for cross-sectional ligamémthat case, the geometrical mul-
tifractality of the cross-sectional material ligament {2,permitted to determine the Mul-
tifractal Scaling Law for tensile strength, as well as fachure energy [21] whenever the
geometrical multifractality for fracture surface is as&dn The topological concept of ge-
ometrical multifractality, which can be also consideredaasextension of the concept of
self-affinity, may explain the inconsistencies shown in pineceding section. A self-affine
fractal [22] is a fractal showing a different scaling law lwrespect to self-similarity, in the
sense that a (statistically) similar morphology can beiabthonly if the lengths are rescaled
by direction-dependent factors. Such a fractal set candsgifted by two different values of
the fractal dimension: a local fractal dimension, in theitiof scales tending to zero, strictly
equal to the Hausdorff topological dimension, and a glotzadtal dimension, corresponding
to the largest scales, equal to the (integer) topologicaédsion.

On the other hand, it appears more consistent to deal witmanemus variation of the
fractal dimension against the observation scale lengghd@eometrical multifractality), than
to consider only two limit values of the fractal dimension.

According to the previous considerations, the followingltifnactal scaling law for dis-
sipated energy density (Fig.5) can be proposed [2, 4, 23]:

S:Sw<1+l67h>, (8)

where the two material constarfs, and!/., can be obtained from fitting the experimental
results. The physical requirements previously exposetharerespected:
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Figure 5: Bilogarithmic diagrams of dissipated energy dgn&rsus size: (a) three sizes; (b) four sizes.
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The horizontal coordinate of the intersection point of the asymptotesis is equal tog /.,
with [, a characteristic length. This point ideally separates tkerdered regime, where
fragmentation is not homogeneous, from the ordered (honeames) regime. The microstruc-
tural characteristic sizky,, in the case of normal-strength concrete, could be prapumatito
the maximum aggregate sigg,...: l., = @ daz-

It is reasonable to suppose that, for finer grained brittléengs (rocks, high-strength
concrete) this value should be considerably smaller théindrcase of normal-strength con-
crete, thus providing the curve to shift horizontally to té in the bilogarithmic diagram.

The process, shows two asympthotes. At the smallest sthéedjssipation occurs over
a domain very close to a surfacB£2), whereas at the largest scales the dissipation occurs
over a domain close to a volum®+€3).

lim S.. (1 + l—h> = S, lim S, <1 + l—h> = +o0. (9)

Conclusions

The uniaxial compression tests performed under displaseoentrol on drilled cylin-
drical specimens obtained by a unique concrete block overyalarge scale range (1:19)
have confirmed as the scale effect on compressive strengtht iss evident as in traction.
The experimental results have instead manifested a staalg sffect on dissipated energy
density, showing a sharp decrease of that quantity by istrgapecimen size.

The hypothesis of energy dissipation in a sub-domain wigfsal dimension between 2
and 3 can be effective to justify such a phenomenon. It carbserged how, when energy
dissipation occurs in the voluméE3) no scale effects are present, whereas when energy
dissipation occurs over an are@%£2) the scale effects are characterized in the bilogarthmi
diagram logS versus log by a linear law with slope equal tel. By fitting the experimen-
tal values, we obtain an intermediate case, and a renordalizlue for dissipated energy
density, invariant with scale, can be obtained. This scalariant value is characterized by



noninteger physical dimensions. This hypothesis worky ve=ll in the size range of the
tested specimens.

In order to extend the trend of the dissipated energy dets#yl the size-scales, a mul-
tifractal law has been proposed, from which comes out howrelisscales the failure is
dominated by a fragmentation proce$s) with severe scale effect, while at large scales
the energy dissipation occurs in the voluni&=3) and the related scale effect vanishes.
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