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ABSTRACT: A slip band crack model based on the boundary element technique is
proposed to simulate fatigue crack growth in stage I. The model is based on a yield strip
model analogously to that of Bilby et al. [1] and extended in such a way, that the crack is
allowed to glide along the ligament and to open simultaneously. Therefore, roughness-
induced crack closure can be included and due to a numerical approach no restrictions on
slip band geometry are required. An easy but efficient solution procedure to solve the
system of equations obtained from the model is presented. The simulation of a crack in a
jagged slip band shows the high influence of roughness-induced crack closure. The
retardation of the crack increases with decreasing inclination angle of the slip band. A
comparison of the simulation with measured short crack data shows the practical
importance of crack closure effects and verifies the simulation procedure.

INTRODUCTION

The interest in short fatigue cracks increased steadily, since Pearsen [2]
realized their particular behaviour. Short cracks are known to behave
significantly different from long cracks. As proposed by Suresh and Ritchie
[3], short cracks can be divided into microstructurally, physically,
mechanically and chemically short cracks. Microstructurally short fatigue
cracks are characterized by their strong interaction with microstructural
features like grain boundaries. Because up to 90% of the fatigue life
depends on the initiation and early growth of microsturcturally short cracks,
the understanding of their behaviour is important for predicting cyclic life.
They often grow in a stage I manner along slip bands and the crack
propagation occurs in single slip. Therefore a yield strip model appears to be
a reasonable approach for crack simulation in this stage. Numerous models
have been proposed dealing with the yield strip concept, see e.g. [1,4,5]. In
refs. [4,5] the interaction of the crack with grain boundaries is taken into



account. In the present study the approach of Bilby et al. [1] (BCS-model) is
applied and extended such as to simulate stage I fatigue in a titanium alloy.
The original analytical model is based on the theory of distributed
dislocations and is able to describe cracks in pure Mode I, Mode II or
Mode III. In contrast to the original BCS model, the model proposed here is
treated numerically. Therefore, the ligament is not restricted to lie in one
plane and the crack faces are allowed to perform normal and tangential
displacements. This treatment allows to take roughness-induced crack
closure into account.

THE MODEL

For the numerical treatment, the ligament is divided into elements
(Figure 1). The material behaviour inside the slip band is assumed to be
linear elastic-ideal plastic while it is linear elastic elsewere. The elements
representing the crack are allowed to perform normal and tangential
displacements simultaniously. Each part of the ligament can be inclined in
arbitary angles to the loading direction.

The distribution of the displacements, which are constant inside each
element, is calculated by two mathematical dislocations per element for
each deformation direction. Two climb dislocations with Burgers’-vectors
bn parallel to the element’s normal direction but different signs represent a
constant normal displacement inside a crack element. Two glide
dislocations with Burgers’-vectors bt parallel to the element’s tangential
direction and different signs have the same function for the tangential
direction inside the crack and plastic zone. This approach is analogous to
that of Riemelmoser et al. in [6].
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Figure 1: Numerical slip band model with open crack.



The stresses on the open crack faces have to disappear and the shear
stresses in the slide plane must not overcome the back stress of the
dislocations τb (local yield stress). The normal displacements of the cracks
are restricted to positive values or zero meaning that roughness-induced
crack closure occurs. To fulfil the boundary conditions, the stresses on each
element are calculated by influence functions ij

mklG , (see [6] for details),

which describe the component of the stress tensor i
klσ in element i due to a

unit displacement j
mb in element j. The stresses i

nnσ and i
tnτ on the midpoint

of element i result from the sum of the stresses of all elements caused by the
displacements bt and bn in these elements and the applied stress ∞,i

nnσ and
∞,i

tnτ . This can be expressed by the following equations:
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The number of elements inside of the crack is p, the number of active
elements in the slip band is q. The system of inequalities (1) depends
linearly on the displacements. For an open, fully elastic crack (without the q
slip band elements) (1) becomes a homogenous system of equations of the
order 2p for the displacements bt and bn of the p crack elements, which can
be solved easily. Once these displacements are obtained, the crack tip slide
displacement can be derived from bt of the elements at the crack tip. The
condition of an open crack results in the restriction

0≥i
nb pi K1= (2)

The problem is now to solve efficiently the system of equations (1)
taking the restriction (2) into account and to get the number of elements in
the slip bands which are active and therefore represent the extension of the
plastic zone. For this purpose, an easy-to-use algorithm has been developed
which solves the system of inequalities iteratively (see Figure 2):



1. In a first step, yielding is ignored, i.e. the tangential displacements of
the elements in the slip bands are set to zero. The stress components σnn

and τtn in the elements of the crack are also set to zero and the
corresponding homogenous linear equation system in (1) is solved.

2. Condition (2) is checked. If negative normal displacements exist, they
are set to zero and the corresponding equation is eliminated from the
system of equations (1a) by deleting the appropriate lines and rows
from the influence matrix G. The new system is solved again and step
one and two are repeated until condition (2) is fulfilled.

3. The shear stresses of all elements in the slip band are calculated
according to eqn. (1) by means of the result from step 2.

4. The elements in the slip band that are overstressed (τi > τb) are
identified. The shear stresses inside these elements are set equal to the
back stress. Therefore, the number of equations is increased by the
equations for the overstressed elements. The resulting inhomogeneous
system of equations is solved again. Steps 2 to 4 are repeated until no
overstressed elements can be found anymore.
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Figure 2: Solution procedure to calculate the extension of the plastic zone.

Usually, less than ten iterations are necessary to solve the above problem
providing a fast solution. Once the influence matrix G of a certain geometry
has been calculated, the required equations are easily obtained by
eliminating the lines and rows in (1) of those elements which are redundant.

Up to this point the calculation is based on the assumption that the stress
is applied from zero to its maximum value. However, during fatigue, the
current load results always from the last load peak (Figure 3). In order to
take the crack history into account, equations (1) and (2) have to be
extended. For this purpose the displacements i

tb and i
nb are linked to a



vector of displacements b. According to Figure 3 the solution of a certain
point of applied stress in the load history, e.g. point c, is obtained by
superpositioning the solution for the prior step (point b) and the solution for
the applied stress interval ∆σbc between those two points b and c. Therefore,
the vector of displacements is divided into a sum of two parts,

bcbc bbb ∆+= (3)

The first part bb describes the solution of the displacements at the point b
and the second one is the solution of the crack problem loaded by ∆σbc.
Inserting equation (3) into the primary equations (1) and (2), the problem
can be solved analogously. In that way one obtains a solution which
depends on the previous history of the crack. This is of high significance
when calculating the cyclic plastic displacement at the crack tip, which is
generally not the same as the static one.
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Figure 3: Principle of superposition applied to the simulation of fatigue.

The crack growth in the simulation is - analogously to the model of
Navarro and de los Rios [4] - correlated with twice the amplitude of the
crack tip plastic displacement. In the present study, the crack advance is
calculated by equation (4):

nCTSDA
dN

da ∆⋅= (4)

in which A is a constant of the order magnitude of one and ∆CTSD is twice
the amplitude of the crack tip slide displacement. The value of CTSD can be
calculated by the tangential displacement at the crack tip. The exponent n is
set to one as a first approach. For crack growth, the crack tip displacement
has to fulfil a complete loop according to the range-pair counting method.
That means, a positive displacement has to be followed by a negative one of
the same magnitude. The crack growth is set proportional to these
oscillation amplitudes.



SIMULATION EXAMPLES

Influence of roughness-induced crack closure on jagged cracks
To investigate the influence of the roughness-induced crack closure
described above, the simulation algorithm is applied to a model with a
jagged geometry consiting of a sequence of slip band parts (Figure 4). The
load axis is vertical and the stress amplitude is 400MPa. About 400
elements where used within seven slip band parts with a length of 100µm
each. 21 elements in the center of the ligament where defined as the starter
crack. The back stress is set to 500MPa.
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Figure 4: Influence of roughness-induced crack closure on crack extension
in cracks growing along inclined slip bands with different inclination angles.

The inclination angles of the individual slip planes are varied between
15° and 75°. According to Mohr’s transformation rule the resolved shear
stress on the slip plane is equal for the inclination angles 15° and 75°. In
Figure 4 the positions of the crack tips are depicted which were achieved
after a constant number of load cycles. On the left hand side of the starter
crack the positions of the crack tips are displayed which where determined
by a simulation ignoring the crack closure i.e. negative normal
displacements were allowed. The corresponding results on the right hand
side of the starter crack are obtained by the same simulations but including
the roughness-induced crack closure.

In all cases, the crack growth rate decreases immediately after passing an
edge (in a real microstructure this should be usually a grain or phase
boundary) and subsequently increases. The crack velocity generally



increases with increasing crack length. The simulation with the highest
resolved shear stress in the slip band (inclination angle is 45°) which ignores
crack closure shows the highest crack growth rate.

Figure 4 demonstrates the influence of the inclination angle on the
relevance of roughness-induced crack closure: the smaller the angle the
stronger is the crack retardation due to crack closure. This oberservation can
be explained by the stronger influence of the crack normal displacements
which are larger at smaller inclination angles due to the higher normal stress
in the slip planes. Therefore the crack with an inclination angle of 15°
propagates with lower speed than the crack with an inclination angle of 75°,
although the resolved shear stresses due to the applied stress are the same.
This theoretical approach indicates a strong effect of roughness-induced
crack closure on crack extension in stage I.

Application of the model to a observed crack geometry
To verify the behaviour of the model by comparison with a real naturally
grown crack, which was experimentally observed in the β-Ti alloy LCB [7],
the geometry of such a crack is put into the slip band model including a
starter crack (Figure 5). Subsequently, the simulation is carried out with and
without including crack closure. The constant A in eqn. (4) was set to one,
the back stress was assumed to be 500MPa and the applied stress amplitude
was again 400MPa.

Comparison of the crack propagation curves in Figure 5 shows that
according to the results reported above the resolved shear stress in the slip
band has a high influence on the crack growth rate. The higher the local
Schmid factor at the crack tip the higher is the crack growth rate. Of course,
the simulation which accounts for crack closure yields lower da/dN values
than the one without crack closure, for which the amplitude of effective
plastic crack tip displacement is naturally higher. Therefore, the stress
amplitude in the simulation without crack closure should be set to 50% of
that including crack closure. Furthermore, the simulation including crack
closure fits the shape of the measured curve in a better way as seen for the
crack length between about 70µm to 120µm. The contours of the two
simulated curves are not congruent. Therefore, the resolved shear stress
seems not to be the only parameter responsible for the driving force at the
crack tip. Moreover, crack closure has to be taken into account.
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Figure 5: Comparison of the model’s behaviour with that of a real
naturally grown crack.

CONCLUSIONS

A numerical slip band model has been proposed based on the theory of
distributed dislocations, which is able to account for roughness-induced
crack closure. An easy and effective solution procedure allows to calculate
crack growth cycle by cycle. The simulations of microstrucutrally short
cracks in stage I show the high significance of roughness-induced crack
closure, which has to be taken into account to describe the crack growth rate
of microstructural short fatigue cracks. A comparison with experimental
data verifies the results obtained from the simulations.
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