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ABSTRACT: A damage evolution approach has been proposed to describe various
deformation and failure processes. This approach is based on the concept of damage and
synergetic principles. It is postulated that deformation and fracture processes in solids are
determined by some general functional law related to the accumulation of damage. A
damage evolution equation allows an estimation of the critical time for a solid to reach its
critical state at the controlling parameter for the deformation or the failure process under
study. Fracture mechanics parameters are accepted as the controlling parameters for the
failure processes.

The damage evolution approach can be seen to be synonymous with the present day
laws to analyse (i) fatigue crack growth; (ii) low cycle fatigue life of notched structural
components and (iii) stress corrosion. Proposed analytical equations describe the
experimental results very well.

INTRODUCTION

A concept of damage evolution in solids has been suggested by Kachanov
[1] and Rabotnov [2] for the analysis of damage under creep loading. The
concept of damage evolution has been used in different later versions (e.g.
[3-5]) for the analysis of various processes of damage accumulation. The
accumulation of damage can be associated with a change of continuity Ψ .
The continuum parameter Ψ (or damage parameter D = −1 Ψ ) has not a
physical interpretation. A change of the parameter Ψ means the appearance
and growth of cracks and/or voids, and a change in the mechanical and
physical properties of a solid. Consequently, the value of Ψ reflects damage
evolution (the state) of solids under an external influence. The description of
the evolution phenomena in various branches of knowledge can be based on
an interdisciplinary or a synergetic branch of science. A typical non-linear
evolution equation of the state of autonomous systems can be expressed as a
function of state parametersq of the system and controlling parameters ξ
[6]. For practical applications of the evolution approach it is important to
choose the vector of state parameters q of the system and the controlling



parameters ξ . A specific form of the function can be obtained from data of
basic experiments and an analysis of the system behaviour under the
influence of various external factors during time τ .

This paper concentrates on a concept of damage evolution to some
problems of crack propagation when the mechanisms of failure do not
change in the time period being considered.

DAMAGE PROCESS IN SOLIDS

The evolution approach has been extended to deformation and fracture
processes of a mechanical loaded system, i.e. “solid - damage”. It is
assumed that the accumulation of damage (the system state) is determined
by the scalar 0 1≤ ≤Ψ  which is the single state variable q = Ψ . The
controlling parameters ξ  for deformation and failure processes of solids
could be stress and strain, the stress intensity factor, temperature and other
parameters, which are essential in the consideration of the damage
accumulation process.

It is postulated that deformation and fracture processes are governed by
some general functional law of damage accumulation [7]. For a simple case
the damage evolution law can be formulated as
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where A > ≥0, n 0 are material (the “solid - damage” system) constants for
the fracture process under study.. The evolution law (1) can be made more
precise when the physical and mechanical aspects of a failure process are
more clearly understood by examining the fracture mechanisms of the solid
and the type of loading under study. The value of Ψ  decreases with an
increase in time τ  during the process of the accumulation of damage in a
solid. The value Ψ = 1 corresponds to the non-damaged state of a solid
when τ = 0, and the value Ψ Ψ= c  corresponds to the critical state when
τ τ= c , where τ c  is the critical time. So, failure occurs in a solid if the
damage reaches the critical value Ψ Ψ= c  at τ τ= c . The following
relationship can be written as follows by integrating Eq. (1) from Ψ = 1 to
Ψ Ψ= c
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Taking into account Eq. (1) and equation for the determination of the critical
time, the cumulative damage law is expressed in the integral form
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if the controlling parameter ξ  is constant. Moreover, the cumulative
damage law given by Eq. (3) may be rewritten using number of cycles N  or
other similar parameters, which are dependent on time of loading, instead of
time.

The influence of the controlling parameter ξ  on the critical time may be
analysed for damage evolution in solids. First it is assumed that the critical
value Ψc  is constant for the deformation and failure process under study,
and the critical state of a damaged solid can be reached for various
combinations of the controlling parameter and time τ . It has been suggested
therefore that the critical value Ψc  [Eq. (2)] is also reached when the
controlling parameter ξ  is equal to the critical value ξ c  at some fixed time
(or a unit of time) τ τ τ= <*

c  , that is
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The evolution equation at Ψc =const is derived from Eqs. (2) and (4),
namely
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This equation may be rewritten at ξ = const  as

                                                 τ τ
ξ
ξc

c

n

=






* .                                             (6)



Thus, the damage evolution equation allows one to estimate the critical
time for a solid to reach its critical state under the given controlling
parameter for the deformation and fracture processes being studied.
Examples of the application of the damage evolution equation will be now
discussed for various processes of deformation and failure.

FATIGUE CRACK GROWTH

Fatigue crack growth may be described by an equation of the type of Eq.
(1). In this case the stress intensity factor K  can be used as the controlling
parameter to describe fatigue failure when linear fracture mechanics is valid.
It is assumed that the mechanism and the process of fatigue failure remain
uninterrupted. Therefore the maximum (or the range) of the stress intensity
factor Kmax  is chosen as the controlling parameter ξ  for fatigue crack
growth.

Taking into account the functional relation of the value Ψ  and the
fatigue crack size a  and replacing τ  with the number of fatigue loading
cycles N , Eq. (1) can be expressed as
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where the value A includes the parameter dN/dτ=const. It has been
suggested that a crack increment )aaa( 1jjj −−=∆  occurs when damage
accumulation reaches a critical value in the vicinity of the fatigue crack tip,
that is Ψ Ψ= c . Dividing variables in Eq. (7) and taking into account the
boundary conditions, the following equation is deduced:
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It is understood that the fatigue crack growth rate da dN/  is some average
value of the rate during crack incremental growth. Therefore the crack
growth rate, as well as the maximum stress intensity factor, can be accepted
as constant values in the limits of integration from a j−1  to a j . From Eq. (8)
the useful approximate relation is obtained
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The critical value Ψc  can also be reached after the application of the
number of cycles N *  under the controlling parameter ξ ξ= c . From Eqs. (9)
and (5) at τ * *→ N  the equation for the fatigue crack growth rate can be
given as
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Considering the value
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the well-know empirical Paris type law da dN CKn/ max=  follows.
It can be seen that the parameters ξ c  and V *  are interdependent for a

given interpretation [Eqs. (10) and (11)], namely various rates V *

correspond to various critical parameters ξ c  for the fatigue crack growth
diagram ( C const= ). Using Eq. (10), there is a possibility of physically
modelling the fatigue crack growth processes when various crack growth
mechanisms have been realised. Such parameters as ∆a Nj c, * and ξ  will
have a defined physical meaning. From this point of view the middle section
of the fatigue crack growth diagram can be analysed. Here the failure
mechanisms are identified on the basis of the microrelief of the fracture
surface. Fatigue crack growth can be accompanied by striation formation on
the fatigue fracture surface [8,9]. If the striation spacing coincides with the
sub-structural grain size arising in the plastic zone ahead of the crack tip, the
value V *  is approximate equal to 10 7−  m/cycle. The critical parameter ξ c

corresponds to the stress intensity factor, i.e. ξc K K= =*
max , and the crack

increment length ∆a j  is equal to the striation spacing and N * = 1. The
stress intensity factor K*  is calculated using Young’s modulus, the Burgers



vector, and the size of the plastic zone ahead of the fatigue crack tip and the
grain size of the metal [8].

Apparently, the evolution approach will be useful for fractographic
analysis of fatigue crack propagation, because the crack growth equation
includes the parameter ∆a j , which characterises the crack growth by
discrete jumps.

CRACK PROPAGATION UNDER STRESS CORROSION
CRACKING CONDITION

It has been suggested that the process of stress corrosion cracking (SCC) is
initiated at some initial (applied) stress intensity factor Ki . Therefore the
value Ki  is chosen as the controlling parameter. Then Eq. (6) may be
rewritten in the following form
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Here τ c  is the time required to initiate the SCC process at the stress
intensity factor Ki and τ *  is some standard time (or a unit of time) required
to initiate the SCC process at some stress intensity factor K Kic=  , and n  is
the constant for a given  “solid - environment” system. The critical time τ c

is increased for a reduction of the initial stress intensity factor. From Eq.
(12) the following conclusion can be drawn, namely that there is no physical
threshold K scc1 . Apparently, the experimental value of the threshold stress
intensity factor is the value K scc1  at some defined time τ scc  of testing. A
similar situation can be observed in fatigue for the threshold stress intensity
factor Kth , defined as the value of maxK  below which the crack does not
grow. The fatigue crack growth threshold is determined as the value of maxK
that corresponds to a certain fatigue crack growth rate thV , which is
conventionally assumed to be equal, for example, to 1010−  m/cycle.

Corrosion crack propagation (the kinetic diagram of SCC) can be
expressed by the function [7]
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Here V a j c0 = ∆ / τ , where ∆a j is the incremental length extension of a
corrosion crack and K  is the current stress intensity factor. Equation (13)
describes the experimental results on stable crack propagation in the steel
under the influence of distilled water (Figure 1). The following important
considerations need to be noted.

Figure 1: Stress corrosion cracking rates in 50X steel under the influence of
distilled water. Predicted crack growth behaviour [Eq. (13)] and

experimental data [10].

The SCC kinetic diagram depends on the initial stress intensity factor,
namely the fastest corrosion crack growth rates correspond to higher Ki

levels [10]. A clear explanation of this phenomenon is found out in a SCC
model based on Eq. (13). If the value Ki  is increased, then the critical SCC
time is reduced due to the expression K consti

n
cτ =  that leads to the

increase of the value V0 . It is possible that the length of the crack growth
increment is also increased. As a result, corrosion crack growth occurs at
higher rates in terms of da d/ τ .



CONCLUSIONS

A damage evolution approach, which has been proposed to describe various
deformation and failure processes, leads to a description of fatigue crack
growth and stress corrosion cracking. This approach is based on the
generalised concept of damage.

It has been shown that the critical parameter ξ c  and the value V *  are
interconnected with the Paris type law of fatigue crack growth. It will be
very useful to use this connection in fractographic analyses and the physical
modelling of fatigue crack propagation.

The corrosion crack growth rate can be calculated using a stress
corrosion cracking model. The proposed equation  allows one to describe
the experimental results for stable crack propagation, showing that the
fastest corrosion crack growth rates correspond to the higher initial stress
intensity factor levels. The dependence of the corrosion crack propagation
versus the initial stress intensity factor has been explained.
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