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ABSTRACT: The problem of the limit equilibrium of a closed circular piecewise-
homogeneous cylindrical shell with a longitudinal crack, which is located in one of the 
parts, ends at the interface or crosses it, is reduced to a system of singular integral 
equations. The numerical analysis of the problem, utilizing the method of mechanical 
quadratures, is carried out for a shell welded from two different semi-infinite shells. The 
effect of mechanical characteristics of the shell parts, crack location and its length on the 
value and character of distribution of both the force-intensity and moment-intensity 
factors is investigated for the normal forces of constant intensity which are applied at the 
crack faces. The obtained results are compared with the known ones for a plate made of 
the same materials and weakened by the similar crack. The redistribution of residual 
stresses in such a shell caused by a crack is determined and analyzed too. 
 
 

INTRODUCTION 
 
The approach utilizing the distribution technique for determination of the stressed 
state and the limit equilibrium of a piecewise-homogeneous cylindrical shell with 
cracks is suggested in [1-3]. The approach is realized by mathematical statement 
of the generalized coupling problem for equations of thin homogeneous cylindrical 
shell with inherent stresses. Besides, the presence of cracks in the considered 
shell is modelled by the inner sources of such stresses (dislocations and 
disclinations with the unknown densities) which are distributed along the lines of 
cracks location [2-6]. To determine stresses in cracked shells it is convenient to 
reduce the problem to solving a system of integral equations using the scheme 
proposed in [3-5]. The solutions of these equations are constructed using 
numerical methods (in particular, a method of mechanical quadratures), and the 
forces and moments intensity factors are found. 



Often, elements of shell structures are subject to the action of residual stresses 
appearing as a result of some technological operation. The presence of crack-like 
defects in these structures results in the redistribution of such stresses, which 
should be taken into account in the analysis of the stressed-strained state and limit 
equilibrium of structures. For determining the residual stresses we apply 
nondestructive theoretical-experimental method based on the statement and solu-
tion of conditionally correct inverse problem of mechanics with the use of the 
available experimental data [5,6]. For the concrete technological conditions of 
shell manufacture, taking into account a priori information about the distribution 
of the residual free strain field which incompatibility causes the residual stress 
field, the residual strains are described by some function which belongs to certain 
compact set and depends on some arbitrary parameters. To find these 
parameters the experimental information about the residual strain field is used and 
a functional, which minimization provides the least deviation of theoretically 
calculated stress fields from experimentally obtained ones, is constructed. Having 
found the unknown parameters we determine the strain field and calculate 
components of the residual stress tensor, among them those which cannot be 
obtained experimentally. 
 
 
BASIC EQUATIONS AND RELATIONS 
 
We consider a thin piecewise-homogeneous cylindrical shell of thickness 2h. Let 
R be the radius of its median surface. We introduce a triorthogonal coordinate 
system ( γβα ,, ) and direct its α -axis ( Rx /=α ) along the generatrix and its γ -

axis along the outer normal to the median surface. The shell consists of two differ-
ent joined semi-infinite closed cylindrical shells and is weakened by a longitudinal 
crack of length 2l0. We place the origin of coordinates in the median surface of 
the shell at the point lying in the middle of the crack line (i.e., α α≤ 0 , β = 0 
α0 0= l R/a f). The parts of this piecewise-homogeneous structure are welded 

together by a circular weld and suffer the action of residual stresses induced by 
welding. The axis of the weld α α= 1   ( )Rl /11 =α  passes through the interface 

of the shell, and we assume that the conditions of ideal mechanical contact are 
satisfied at this interface. 

To describe the entire piecewise-homogeneous shell and physicomechanical 
processes in it, we use the following representation: 
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where p( )α  and )(αkp  (k =1,2) are unknown or given functions defined in re-

gions occupied by the entire shell and its k th part, respectively, and S− ( )α  is the 
asymmetric unit function [1,2]. 

To determine inherent stresses and their redistribution we use the following 
representation of the components of the total strain tensor eij  [3-6]: 
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where eij
0  are components of the stress-free strain tensor and e

ije  are components 

of the elastic strain tensor expressed via the inherent stresses according to 
Hooke’s law. 

For a piecewise-homogeneous cylindrical shell a system of partly-degenerated 
differential equations of elastic equilibrium in displacements obtained using the 
method of generalized coupling problems has the form: 
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where Lij α( )  and ′gi kl klα β ε κ, , ,0 0c h , i j k l, , ; , ,= =13 12, are the same differential 

operators and functions as in the case of a homogeneous shell [6] but with 
discontinuous coefficients due to the representation of Poisson’s ratio ( )αυ  in the 

form of Eq. 1; u v,  and w are components of the displacement vector; 
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In deducing the system of Eqs. 3, we have taken into account only the fact that 

the components u, v and w and the rotation angle θ ∂1
1

1= −R w  are continuous. 
The jumps of the derivatives of displacements with respect to α at the interface 
α α= 1  are determined from other conditions of ideal mechanical contact: 
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where N S Mk k k
1 1
( ) ( ) ( ), ,*  and Q k

1
*( )  (k=1,2) are generalized forces and moments in 

the kth part of the shell [6]. 
 
The Procedure for Obtaining Singular Integral Equations 
Let the considered shell be subject to the action of forces symmetric about the 
axis of the crack. The crack faces are free of stresses. To analyze of the limit 
equilibrium of the shell we use the method of distortions [6]. According to this 
method, the cracked shell is associated with a similar continuous shell in which 
sources of inherent stresses with unknown densities are located along the line of 
the crack. Further, we use the theory of generalized functions and relate the 

sources of internal stresses (ε α βkl
0 ( , ), and κ α βkl

0 ( , ) ) to the jumps of generalized 
displacements (displacements and angles of rotation) and their derivatives passing 
the crack line. The expressions for these sources are substituted in the key system 
of partly-degenerated differential Eqs. 3. As a result, the right-hand sides of these 

equations contain the following relations for ε α βkl
0 ( , ) and κ α βkl

0 ( , ) : 
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where δ β( ) is the Dirac delta-function; θ α ∂2

1
2( ) = −−R w va f, 

( ) ( ) ( )00 α−α−α+α=αχ −+ SS ,   ( )[ ] ( ) ( )0,0, −α−+α=α ppp c . 

Using relation Eq. 5 we construct the solution of the system of Eqs. 3 on the 
basis of the 2π–periodic Green tensor and satisfy the boundary conditions 
imposed on the crack faces. These conditions reflect the fact that on the crack 
line the sums of forces and moments of the principal stressed state (caused by 



loading residual stresses in the continuous shell) and the disturbed stressed state 
(induced by the crack) are equal to the forces and moments acting on the crack 
faces, i.e.,  
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Using conditions Eqs. 4 we reduce the problem under consideration to the same 
type system of six singular integral equations as in [5], where 

( ) ( ) ( )0,0, 2
0
21 α−α−=α rNNf , ( ) ( ) ( )0,0, 2

0
23 α−α−=α rMMf , N2

0 and M2
0  are 

the normal force and bending moment on the crack line in the shell without crack, 

N r
2  , M r

2  are the residual forces and moment on the crack line. 
This system of singular integral equations is valid for the shell with a longitudinal 

crack which is located in one of the parts ( )01 α>α , ends at the interface 

( )01 α=α  or crosses it ( )01 α<α . 

 
Determination of Residual Stresses 
The appearance of technological residual stresses is explained by the 
incompatibility of the residual strain field eij

0  (Eq. 2). Assume that the conditions of 

welding and post-welding thermal treatment are such that the residual stressed-
strained state of the structure is axisymmetric and can be described by a spherical 
tensor (e eij ij

0 0= δ α γ( , ) ). Then the system of Eqs. 3 implies the key equation of 

the fourth order for the deflection w of the median surface of the analyzed 
structure received in [1,2,5]. According to the chosen theoretical-experimental 
method for the investigation of residual stresses it is necessary to take into 
account the experimental data obtained e.g. using nondestructive physical 
methods (photoelastic, magnetic, ultrasonic, etc.). To construct a regularizing 
algorithm for solution of the conditionally correct axisymmetric inverse problem 
posed on the basis of such an equation, we take into account the available 
additional a priori information about the qualitative form of the free residual strain 

field e0  caused by welding, namely, its boundedness, localization near the weld, 
and the possibility of description by a smooth piecewise-continuous function. This 
enables us to assume that this function belongs to a compact set and can be 
represented in the polynomial form with unknown coefficients 

),0,2,1( Njb j ==λλ  and parameters ∗
λα  (the bounds of the zone of influence 

of e0 ( , )α γ ). 



Thus, we arrive at the final key equation of the axisymmetric inverse problem 
for the piecewise homogeneous cylindrical shell with residual welding stresses. 
This equation contains a finite number of unknown parameters and, hence, the 

inverse problem of determining the free residual strain field e0  can be formulated 
as a problem of their search. Further, solving such an equation we can find 
residual stresses at any point of the shell using the well-known formulas. To 

determine the unknown parameters b j
λ  and ∗

λα  we use some functional [5] which 

minimization provides the least deviation of theoretically calculated residual 
stresses from the experimentally obtained ones. As a result, we obtain a system of 
linear algebraic equations in the unknown quantities b j

λ  for fixed values of the 

parameters ∗
λα . The values of these parameters are taken from a special set of 

probability values determined using physical arguments and taking into account 

the necessity of minimization of the functional. If the parameters b j
λ  and ∗

λα  are 

determined, then we use the well-known formulas from [6] to obtain final 
expressions for the residual stresses at any point of the shell. After that we 
determine the redistribution of residual stresses in the piecewise-homogeneous 
shell caused by a crack using the above-mentioned system of singular integral 
equations. 
 
 
NUMERICAL RESULTS 
 
We carried out the numerical analysis of the stress intensity factors K1 and K2 for 
the force N2 normal to the crack line and the bending moment M2. Calculations 
were performed by the method of mechanical quadratures for a shell with crack 
located in one of the part ( )01 α>α . 

 
The Shell with a Crack Under Normal Forces of Constant Intensity 
The investigation was performed for the shell Aluminum-Epoxy structure with a 
radius of the median surface R = 0,15 m and a thickness 2h = 0,003 m without 

residual stresses ( 02 =rN  and 02 =rM ) for the case crack faces loaded by 

forces of constant intensity 0N  ( ( ) 01 Nf −=α ,  ( ) 03 =αf ). The plots of varia-

tion of the normalized intensity factors ( )001 lNKK N =  and 

( )002 lcRNKKM =  versus various values of parameter 10 / αα=ρ  at 



1.00 =α  are presented in Fig. 1 (the index 1 indicates the crack tip close to the 

interface, the index 2 marks the opposite crack tip). The dashed lines show the 
variation of intensity factors in a piecewise-homogeneous plate made of the same 
materials and weakened by the similar crack as given by Cook and Erdogan [7]. 
 

 
Figure 1: Variation of normalized intensity factors NK  and MK in the shell. 

 
We can conclude that the interface effect on the values of intensity factors be-

gins at 1.0=ρ  early than in a plate. The values of normal force-intensity factors 

are well beyond the values of moment-intensity factors. Variation of moment-
intensity factors is nonmonotonical. 

 
Redistribution of Residual Stresses Caused by a Crack 
Numerical analysis was performed for the shell with residual stresses subject to 

the action of internal pressure of intensity p N pR( 2
0 = , M2

0 0= )  with a radius of 
the median surface R = 0,065 m and a thickness 2h = 0,002 m. The distribution 
of technological residual stresses computed with the help of the program complex 
for the proposed theoretical-experimental method is depicted in [5]. 

In Figure 2 we have plotted the dependence of the normalized intensity factors 

( )01 lpRKK N =  and ( )0
2

2 lcpRKKM =  on the relative half-length of the 

crack α0  for various values of the parameter n N pRr0
2 0= ( )( ) . 

The influence of residual stresses on the forces and moments intensity factors 

increases with the parameter n0 . If the crack tip is located in the region of 
compression, then, for given values of the parameters, the quantity NK  is smaller 



than in the shell without residual stresses (n0=0). This means that residual stresses 
can either promote fracture of the analyzed structure or inhibit the development of 
cracks in this structure (depending on their distribution and crack length). 

        
Figure2: Dependence of the normalized intensity factors NK (à) and MK (b) on 

the relative crack length α0  and the parameter n0 . 
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