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ABSTRACT: The problem of the limit equilibrium of a closed circular piecewise-
homogeneous cylindrical shell with a longitudinal crack, which islocated in one of the
parts, ends at the interface or crosses it, is reduced to a system of singular integral
equations. The numerical analysis of the problem, utilizing the method of mechanical
quadratures, is carried out for a shell welded from two different semi-infinite shells. The
effect of mechanical characteristics of the shell parts, crack location and its Ilength on the
value and character of distribution of both the force-intensity and moment-intensity
factorsis investigated for the normal forces of constant intensity which are applied at the
crack faces. The obtained results are compared with the known ones for a plate made of
the same materials and weakened by the smilar crack. The redistribution of residual
stresses in such a shell caused by a crack is determined and analyzed too.

INTRODUCTION

The gpproach utilizing the distribution technique for determination of the stressed
date and the limit equilibrium of a piecewise-homogeneous cylindrica shell with
cracks is suggested in [1-3]. The gpproach is redized by mathematical statement
of the generdized coupling problem for equations of thin homogeneous cylindricd
shdl with inherent stresses. Besides, the presence of cracks in the considered
shel is modeled by the inner sources of such stresses (didocations and
disclinations with the unknown dengties) which are digtributed dong the lines of
cracks location [2-6]. To determine stresses in cracked shells it is convenient to
reduce the problem to solving a system of integrd equations using the scheme
proposed in [3-5]. The solutions of these equations are constructed using
numericd methods (in particular, a method of mechanicd quadratures), and the
forces and moments intengity factors are found.



Often, dements of shell structures are subject to the action of resdud stresses
appearing as aresult of some technological operation. The presence of crack-like
defects in these Sructures results in the redigtribution of such stresses, which
should be taken into account in the analysis of the stressed-drained Sate and limit
equilibrium of dructures For determining the residua dresses we gpply
nondestructive theoretical-experimental method based on the statement and solu-
tion of conditionally correct inverse problem of nechanics with the use of the
available experimentd data [5,6]. For the concrete technological conditions of
shdl manufacture, taking into account a priori information about the ditribution
of the resdud free drain fiddd which incompetibility causes the resdud sress
fidd, the resdud srains are described by some function which belongsto certain
compact st and depends on some abitray parameters. To find these
parameters the experimenta information about the resdud drain fidd is used and
a functionad, which minimization provides the least deviaion of theoreticaly
caculated dress fidds from experimentally obtained ones, is constructed. Having
found the unknown parameters we determine the drain fidd and caculate
components of the resdud sress tensor, among them those which cannot be
obtained experimentaly.

BASIC EQUATIONSAND RELATIONS

We congder a thin piecewise-homogeneous cylindrica shell of thickness 2h. Let
R be the radius of its median surface. We introduce a triorthogona coordinate
system (a, b, g) and direct its a -axis(a = x/ R) dong the generatrix and its g-
axis dong the outer norma to the median surface. The shdl conssts of two differ-
ent joined semi-infinite dlosed cylindricd shells and is weskened by a longitudind
crack of length 2l,. We place the origin of coordinates in the median surface of
the shell & the point lying in the middle of the crack line (i.e, [a|£ay, b=0
@, =1ly/R)). The parts of this piecewise-homogeneous structure are welded
together by a circular weld and suffer the action of resdua stresses induced by
welding. The axis of thewdld a =a, (a; =1,/R) passes through the interface
of the shell, and we assume that the conditions of ideal mechanical contact are
satisfied a thisinterface.

To describe the entire piecewise-homogeneous shell and physicomecharnica
processesin it, we use the following representation:



p(@) =p,(a)*p,(a)- p,(a)lS. (a- ay) )
where p(a) and p, (&) (k=1,2) are unknown or given functions defined in re-
gions occupied by the entire shell and its kth part, respectively, and S (a) isthe
asymmetric unit function [1,2].

To determine inherent stresses and their redigtribution we use the following
representation of the components of the total strain tensor g; [3-6]:

g =€ +e, @

where q‘j) are components of the stress-free strain tensor and € are components

of the dadic drain tensor expressed via the inherent stresses according to
Hooke's law.

For a piecewise-homogeneous cylindrical shell a system of partly-degenerated
differentid equations of dastic equilibrium in digplacements dotained using the
method of generalized coupling problems has the form:

Ly@u+ Lo@V+ Li@w=gfab.ef ki) +gfab), i=13, (3

where L(a) and ga,b,ef k), i,j =13 k| =12, are the same differertia

operators and functions as in the case of a homogeneous shell [6] but with
discontinuous coefficients due to the representation of Poisson’sratio u(a) inthe

form of Eq. 1; u, v and W are components of the digplacement vector;

gf(ab) = {[ﬂlu]l - R(I,eglL + Uy [622J1)}d- (a - al) ,
ggl(a,b) = %{(1"' 4012)(1' Ul)[ﬂ1V]1 - R(l' Ul)([esz + 2Rc12[kf2]1}d_ (a - al)'

g§(a, b) = (;f{lﬁ’w]l- (2' ul)ﬂZ[ﬂ1V]1+R2 (lﬂlkglll"'ullﬂlkgzll)}dg:(a - al) +
+{lﬂfWJ1 + RZ(I_kJ(.)lll + UllkgzL + 2(1' Ul)ﬂzlkfzjl}dg:(a - al) ,

1 2 "
€ = o CPmn(@ b, 9dg. kfy =— ¢pfn(a.b.glodg, mn =12
2h_h 3

_d'sf(a) , n2
~ da -

[p(b)]1 = p,(a; +0b)- py(a,- Ob), d (a) 3R2




In deducing the system of Egs. 3, we have taken into account only the fact that
the components u, v and w and the rotation angle ¢, = R",w are continuous.

The jumps of the derivatives of displacements with respect to a at the interface
a =a, are determined from other conditions of idedl mechanical contact:

*

NP =N, SP =S, MP=MP, QP =QPforaza, @

where N¥, S M® and @™ (k=1,2) are generalized forces and momentsin
the kth part of the shell [6].

The Procedure for Obtaining Singular Integral Equations

Let the consdered shdl be subject to the action of forces symmetric about the
axis of the crack. The crack faces are free of stresses. To andyze of the limit
equilibrium of the shell we use the method of digtortions [6]. According to this
method, the cracked shell is associated with a smilar continuous shell in which
sources of inherent stresses with unknown dengities are located aong the line of
the crack. Further, we use the theory of generdized functions and relate the
sources of interna stresses (ek| (a,b), and k° 1 (@,b)) to the jJumps of generalized
displacements (displacements and angles of rotation) and their derivatives passing
the crack line. The expressions for these sources are substituted in the key system
of partly-degenerated differential Egs. 3. Asareault, the right-hand sides of these
equations contain the following rdations for € (a,b) and k% (a,b):

el =6 =0, e, =R ![v(a)].c(a)d(b),
k11 k12 =0, k22 =-R l[Qz (a)] d(b) ®)

where db) is the Dirac ddtafunction;  g,(a) = R *(T,w- V),
c(a)=s.(a+ao)- S (a-ao), [pla)]c=rp(a+0)- pla,-0).

Using rdaion Eq. 5 we congruct the solution of the system of Egs. 3 on the
bass of the 2p—periodic Green tensor and satisfy the boundary conditions
imposed on the crack faces. These conditions reflect the fact that on the crack
line the sums of forces and moments of the principd stressed state (caused by



loading resdud stresses in the continuous shell) and the disturbed stressed dtate
(induced by the crack) are equd to the forces and moments acting on the crack
faces, i.e,

N>(a,0) = N;(a,0 = f,(a), M;(a,0) = M;(a,0)= fy(a).

Using conditions Egs. 4 we reduce the problem under consderation to the same
type sysem of 9x dgngular integrd equations as in [5], where
fi(a)=-N2(a,0)- Ny(a0), fz(a)=-M2(a,0)- M5(a,0), N and MY are
the norma force and bending moment on the crack line in the shell without crack,
N; , M} arethe residua forces and moment on the crack line.

This systemof sngular integrd equations is vdid for the shdl with alongituding
crack which is located in one of the parts (a, >a,), ends a the interface

(a, =ag) orcrossesit (a; <ag).

Determination of Residual Stresses
The appearance of technologica resdud dresses is explaned by the
incompatibility of the resdud grain fidd q? (EQ. 2). Assume that the conditions of

welding and post-welding thermd trestment are such that the resdud stressed-
strained State of the structure is axisymmetric and can be described by a spherical
tensor (g = dijeo(a, g)). Then the system of Egs. 3 implies the key equation of

the fourth order for the deflection w of the median surface of the andyzed
structure received in [1,2,5]. According to the chosen theoretica-experimenta
method for the investigation of resdud stresses it is necessary to take into
account the experimentd data obtained eg. usng nondestructive physica
methods (photodagtic, magnetic, ultrasonic, etc.). To condruct a regularizing
agorithm for solution of the conditionaly correct axisymmetric inverse problem
posed on the basis of such an equation, we take into account the available
additiond a priori information about the quditative form of the free resdua drain
fidd € caused by welding, namély, its boundedness, localization near the weld,
and the possibility of description by a smooth piecewise-continuous function. This
enables us to assume that this function belongs to a compact set and can be
represented  in the polynomid form  with  unknown  coefficients

qi (I =12, j :O,_N) and parameters a, (the bounds of the zone of influence
of €(a,g)).



Thus, we arive a the find key equation of the axisymmetric inverse problem
for the piecewise homogeneous cylindrica shell with resdua welding siresses.
This equation contains a finite number of unknown parameters and, hence, the
inverse problem of determining the free residua sirain fild €° can be formulated
as a problem of their search. Further, solving such an equation we can find
resdua dresses a any point of the shell usng the wel-known formulas. To
determine the unknown parameters qi and a| we use somefunctiond [5] which
minimizetion provides the least devidtion of theoretically caculated resdua
stresses from the experimentally obtained ones. As aresult, we obtain a system of
linear algebraic equations in the unknown quantities qj for fixed values of the

parameters a, . The values of these parameters are taken from a specia set of
probability values determined using physica arguments and taking into account
the necessity of minimization of the functiond. If the parameters qi and a| are

determined, then we use the well-known formulas from [6] to obtain fina
expressions for the resdud dresses at any point of the shell. After that we
determine the redigtribution of resdua stresses in the piecewise-homogeneous
shdll caused by a crack using the above-mentioned system of sngular integrd
equations.

NUMERICAL RESULTS

We carried out the numericd andyds of the stress intengty factors Ky and K for
the force N, normd to the crack line and the bending moment M,. Cdculations
were performed by the method of mechanica quadratures for a shell with crack
located in one of the part (a, > a, ).

The Shell with a Crack Under Normal Forces of Constant I ntensity
The invedtigation was performed for the shel Aluminum-Epoxy sructure with a
radius of the median surface R = 0,15 m and a thickness 2h = 0,003 m without

residua stresses (N, =0 and M; =0) for the case crack faces loaded by
forces of constant intensity N, (f,(a)=-N,, fs(a)=0). The plots of varia-
ion of the nomdized intensty factos Ky = K,/(Noyfig) and
Ky =K2/(NOCR\/E) versus various vaues of parameter r =a,/a; &



a,=0.1 are presented in Fig. 1 (the index 1 indicates the crack tip close to the

interface, the index 2 marks the opposite crack tip). The dashed lines show the
vaiaion of intengty factorsin a piecewise-homogeneous plate made of the same
materials and weakened by the smilar crack as given by Cook and Erdogan [7].
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Figure 1: Variaion of normalized intengty factors K, and K, inthe shell.

We can conclude that the interface effect on the values of intengity factors be-
ginsa r =0.1 ealy than in a plate. The vaues of normd force-intensity factors
are well beyond the vaues of moment-intengty factors. Variation of moment-
intengty factorsis nonmonotonicdl.

Redistribution of Residual Stresses Caused by a Crack

Numerica andyss was peformed for the shell with residua stresses subject to
the action of internal pressure of intensity p (N2 = pR, M2 = 0) with aradiusof
the median surface R = 0,065 m and a thickness 2h = 0,002 m. The ditribution
of technologicd resdud stresses computed with the help of the program complex
for the proposed theoreti cal- experimental method isdepicted in [5].

In Figure 2 we have plotted the dependence of the normalized intensity factors
Ky = Ky/(pRyTy) and Ky, =K, /[cor2 Iy ) on the rdlative haf-length of the
crack a,, for various values of the parameter n® = N3 (0)/(pR).

The influence of resdua dresses on the forces and moments intendity factors
increases with the parameter n°. If the crack tip is located in the region of
compression, then, for given values of the parameters, the quantity K, issmdler



than in the shell without residua stresses (n°=0). This means that residua stresses
can ether promote fracture of the andyzed structure or inhibit the development of
cracksin this structure (depending on their distribution and crack length).
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Figure2: Dependence of the normaized intensity factors K (&) and K,, (b) on
the relaive crack length a, and the parameter n°.
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