
Strip Yield Model for a Crack in a Plate of Arbitrary
Thickness

A. Kotousov1 and C. H. Wang2

1Department of Mechanical Engineering, Monash University, PO Box 31, VIC
3800, Australia.
2Aeronautical and Maritime Research Laboratory, Defense Science and
Technology Organization, 506 Lorimer Street, Fishermans Bend VIC 3207,
Australia.

ABSTRACT: Fatigue and fracture of plate-like structures exhibit a strong dependence on the
cross-sectional thickness, when the results are expressed in terms of stress-intensity factors.  A
theoretical approach to account for this plate-thickness effect is presented, within the
framework of the generalized plane-strain theory by Kane and Mindlin.  Fundamental solutions
(Green’s functions) for an edge dislocation in a plate of arbitrary thickness are first obtained,
and then applied to analyze the effect of plate thickness on the elasto-plastic deformation
behavior at the tip of a through-the-thickness tensile crack.

INTRODUCTION

For plate-like structures, the cross-sectional thickness has a strongly influence
on both the fatigue crack growth rates [1,2] and the fracture toughness,
especially when the size of the process zone is comparable to the plate
thickness. This is primarily due to significant difference between the stress-
state at the tip of a through-thickness crack in a plate of arbitrary thickness and
that corresponding to either the idealized plane-stress or plane-strain
conditions.  In the case of fatigue crack growth, this difference often manifests
itself in a transition from flat to slant crack growth in thin structures [3]. For
fatigue life calculations, this difference in the in-plane and out-of-plane
constraints may significantly affect the accuracy of predictions [2] when the
base-line fatigue crack growth curves generated using standard specimens
(often under plane-strain conditions) are applied to predict the fatigue life of
engineering structures of thin cross section.

Studies to date [4,5] have generally addressed separately two kinds of
constraint: in-plane stresses and out-of-plane stresses. The deviation of the



actual three-dimensional stress-state at a crack-tip from that under idealized
plane-stress conditions provides a measure of the constraint. The magnitudes of
these in-plane and out-of-plane constraints depend upon the cross-section
thickness of the structure relative to the applied load and the material
properties. Under the small scale yielding (SSY) condition, the effect of in-
plane constraint on fatigue crack growth is relatively weak, as confirmed by
experimental observations [6] indicating that biaxial loading only moderately
alter the crack growth rates. However, the specimen thickness has been found
to affect fatigue crack growth rates under the same applied stress intensity
factor [1,7,8,9]. This effect is particularly strong when crack-tip plastic zone
size becomes comparable to the thickness, a problem frequently encountered in
analyzing thin section structures such as aircraft skins.

Due to the complexities of the three-dimensional constraint at the tip of a
through-thickness crack, earlier attempts at quantifying the effects of constraint
on fatigue crack growth were based on simple assumptions such as plane-stress
[10] or plane-strain conditions [11]. Accurate assessment of the thickness effect
on fatigue crack growth rates and fracture toughness has relied on
computational methods, such as the finite element method, where the results are
to some extent dependent on the mesh density of the finite element model.
Newman and his colleagues [3,12] conducted detailed full three-dimensional
finite element analyses for through-thickness cracks in an elastic-perfectly
plastic material. From these results an approximate equation [12] for the
constraint factor has been constructed, which varies with the ratio of crack-tip
plastic zone to plate thickness [2,3] in the case of small-scale yielding.  In the
presence of large-scale yielding, no results are currently available on the
appropriate value of the constraint factor.

The purpose of this paper is to present a new theoretical approach to
account for the effect of cross-sectional thickness on the fracture of a plate of
arbitrary thickness.  The analysis is based on the generalized plane-strain theory
of Kane and Mindlin [13], which is summarized in the next section.

GENERALIZED PLANE STRAIN THEORY

A plate theory, which includes the through-the-thickness stress components,
while retaining the simplicity of a two-dimensional model, was introduced by



Kane and Mindlin [13] in their work on the high-frequency extensional
vibrations of plates. This theory, to be termed the generalized plane-strain
theory, was employed by Yang and Freund [14] to study the three-dimensional
stress distribution near the tip of a semi-infinite crack using Wiener-Hopf
technique.  Their results suggested that the crack-tip field asymptotically
approaches that of plane-strain over a distance comparable to plate thickness.
By adopting the generalized plane-strain theory, Kotousov and Wang [15]
obtained an exact solution for the three-dimensional stress distributions around
a circular hole, and approximate, explicit, solutions for V-shaped notches with
a circular tip.

The theory of generalized plane strain assumes that the through-the-
thickness extensional strain is uniform in the thickness direction.  In the case of
an elastic plate bounded by planes hz ±= , where x  and y represent the in-
plane Cartesian coordinates, the displacement field takes the following form
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It is clear that the equation (1) implies that lines normal to the mid-plane of the
plate in the undeformed state remain normal to the mid-plane in the deformed
state and that these lines experience uniform extensional strain hyxw ),( ,
where ( )yxw ,  is the out-of-plane displacement at the surfaces hz ±=  of the
plate.

Stress resultants are defined by
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It is seen that the xyyyxx NNN  and,,  are the usual forces per unit length, and

zzN  is h2  times the average transverse normal stress. The parameter

yx RR  and  are components of "pinching" shear, playing a role similar to that of
the transverse shear force in the corresponding equilibrium equations of
flexible plates.



FUNDAMENTAL SOLUTION FOR EDGE DISLOCATION

To develop a strip-yield model for a through-the-thickness crack in a plate of
arbitrary thickness, the Green’s function for an edge dislocation in a plate is
required. Let the z-axis be along the dislocation line. The differential equations
of equilibrium for an edge dislocation deformation in an isotropic finite
thickness plate can be written as
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where the operators ∇  and 2∇  are defined as ji
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≡∇ , parameters E and ν  denote respectively the Young’s

modulus and the Poisson’s ratio, b  is the Burgers vector of the dislocation, τ  is
the tangent vector to the dislocation line, and u  is multi-valued function subject
to the following uniqueness condition,

bu −=∫Γd (4c)

where the contour Γ traverses clockwise around the vector τ .
Omitting details, the stress resultants for the edge dislocation in a finite

thickness plate are found to be
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It can be shown that the present solutions recovers correctly the plane-stress
solution and the plane-strain solution by taking the limit 0→r  with 0/ →hr
and ∞→hr / , respectively.

3D STRIP YIELD MODEL

In the following a strip-yield model similar to Dugdale model will be presented,
making use of the newly developed edge dislocation solutions presented in the
previous section.  Plasticity is assumed to occur within a strip directly ahead of
the crack tip; the variation of the plastic zone through the plate thickness is not
considered.  Instead, the plastic zone size is assumed to be constant in the
thickness direction.  In this formulation the crack and plastic zones are
represented by a distribution of displacement discontinuities, or edge
dislocations.  Within the plastic zone, the stresses may then be written as,
adopting Tresca yield criterion,

YSzzyy hNN σ2=− (6)



where YSσ  denotes the material's yield stress under uniaxial tension.  Thus, the
equilibrium condition can be written as,
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where the Green's function yyG  and zzG  is given by (5b) and (5c), referring to
the stress resultants,
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The plastic zone size pr  can be determined so that the stress at the tip of the
plastic zone is finite. This can be expressed mathematically as

0)( =+ praK   (9)

Solution of the system of integral equations (7a) and (7b) can be obtained
by using Gauss-Chebyshev quadrature method and applying an iterative
procedure with respect to the plastic zone size. The results are shown in Fig.1
for three different ratios of crack size to plate thickness, together with the
Dugdale model’s solutions for plane-stress and plane-strain.

It is clear that for low applied stress (relative to material’s yield stress) the
present solutions do indeed recover the plane-strain solutions.  However, at



high applied stress )1( →∞
YSyy σσ , the plastic zone size approaches the plane-

stress solution. Furthermore, in addition to the applied stress, the ratio of crack-
size to plate thickness ah  is another parameter affecting the extent of plastic
zone.

0

0.2

0.4

0.6

0.8

0 0.3 0.6 0.9 1.2 YSyy σσ ∞

pra
a
+

Plane stress

Plane strain

10=
a
h

1=
a
h

1.0=
a
h

Fig.1  Plastic zone size as a function of the ration applied load to the yield load
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