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ABSTRACT: Advanced mechanical and structural applications require accurate assessment
of the damage state of materials during the fabrications as well as during the service. Due to
the complex nature of the internal structure of the material, composites including the layered
composite often fail in a variety of modes. The failure modes very often are influenced by the
local material properties that may develop in time under heat and pressure, local defect dis-
tribution, process induced residual stress, and other factors. Consider a laminate composite
in plane stress conditions, multi-layered beam bonded to planes having shear modulus Gy
and Poissons ratio v respectively, subjected to bending. The behaviour of the cracks depends
on the cracks configuration, size, orientation, material properties, and loading characteristic.
The firacture mechanics problem will be attacked using the photoelastic visualisation of the
fracture events in a model structure. The proposed experimental method will developed
fracture mechanics tools for a layered composite fracture problem.

INTRODUCTION

The development of the failure criterion for a particular application is very
important for the predictions of the crack path and critical loads.

Recently, there has been a successful attempt to formulate problems of
multiple cracks without any limitation. This attempt was concluded with the
series of papers summarising the undertaken research for isotropic [2], an
isotropic [4] and non-homogeneous class of problems [5] and [4].

Crack propagation in multi-layered composites of finite thickness is es-
pecially challenging and open field for investigation. Some results have
been recently reported in [5]. The numerical calculations were carried out
using the finite element programs ANSYS 5.4 and 5.6 [8]. Two different
methods were used: solid modeling and direct generation.

MATERIAL PROPERTIES

Material properties exert an influence on the stress distribution and concen-
tration, damage process and load carrying capacity of elements. In the case



of elastic-plastic materials, a region of plastic strains originates in most
heavily loaded cross-sections. In order to visualise the state of strains and
stresses, some tests have been performed on the samples made of an “aral-
dite”-type optically active epoxy resin (Ep-53), modified with softening
agents in such a way that an elastic material has been obtained. Properties of
the components of experimental model are given in Table 1.

TABLE 1: Mechanical properties of the experimental model components

Layer | Young's Poisson’s | Photoelastic constants | Photoelastic constants in

Modulus ratio v; in terms of stresses terms of strain
E; [MPa] [1] k& [MPa/fr] FARL

1 3450.0 0.35 1.68 6.572-10™

2 1705.0 0.36 1.18 9.412-10"

3 821.0 0.38 0.855 1431 -10™

4 683.0 0.40 0.819 16.79 -10™

EXPERIMENTAL RESULTS

The stress distribution in was determined using two methods: Shear Stress

Difference Procedure (SDP — evaluation a complete stress state by means

the isochromatics and the angles of the isoclines along the cuts) [3].
Method of the characteristics (the stress distribution were determined

using the isochromatics only and the equations of equilibrium [8].

In a general case [7], the Cartesian components of stress: oy, oy and 7y, in

the neighbourhood of the crack tip are:
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Figure 1: a) Four-layer beam with cracks. Photoelastic model under four
point bending, the isochromatic patterns (oj - 0z) distribution b) Initial
loading (P =20.0 N). ¢) P =50.0 N - tension of layers 2, 3 and 4.

By inserting the values k,-m; = o1 - 03 into (2) we obtain the isochromatics

curves in polar coordinates (r, ®). For each isochromatic loop the position
of maximum angle @, corresponds to the maximum radius of the ry,. This
principle can also be used in the mixed mode analysis [11] by employing
information from two loops in the near field of the crack, if the far field
stress component - g, (@) = const. Differentiating Eq. 2 with respect to &,
setting @ = Oy and r = ry, and using Eq. (07m/06n = 0) gives:
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Substituting the radii 7 and the angles @&, from these two loops into a pair
of equations of the form given in Eq. 3 gives two independent relations
dependent on the parameters K|, Kj; and o,,. The third equation is obtained
by using Eq. 2. The three equations obtained in this way have the form

gi(KIaKnao_gx):Oa gj(KlsKHang):Oa fk(KlsKnaGox):O “)

In order to determine K, Kjj and o, it is sufficient to select two arbitrary
points 7;, ©, and apply the Newton-Raphson method to the solution of three
simultaneous non-linear Eq. 4. The values K¢ according to mixed mode of
the fracture were obtained from

K. =K} +K} &)

Example of the numerical results obtained from Eq. 4:

formy =12.5,r1=0.6 m, @, = 1.484, r, = 10.45 mm, &, =1.416
Ki''=0.14 MPaVm, Ki' = 1.05 MPavim, o = 0.039 MPa, K¢ = 1.05 MPavm
By inserting the values r;, @, in three selected arbitrary points into (2) we
obtain three non-linear equations (i = 1, 2, 3)

S (K, Ky,0,)=0 (6)

and apply the Newton-Raphson method to the solution we have Kj, Kj and
Oox. Example of the numerical results (shown in Figure 3) obtained from (6):
for m; =12.5, r1 =0.72 mm, & = 1.484, my = 8.0, r»=1.15 mm, &, = 1.375,
m3=5.5mm, r;=1.85, @& =1.315

@) @ @)
Ki =0.702 MPaVm, Ky = 1.043 MPavm, oy, = 0.152 MPa, K¢ = 1.257 MPavm



Figure 2: The isochromatic patterns (o7 - 02) distribution according to the
propagation of the crack obtained experimentally.
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Figure 3: Distribution of stresses oy in cros sections A-A and B-B 0.5 mm
with respect to crack obtained experimentally.

NUMERICAL DETERMINATION OF STRESS DISTRIBUTION

The distribution of stresses and displacements has been calculated using the
finite element method (FEM) [9]. Finite element calculations were per-
formed in order to verify the experimentally observed the isochromatic dis-
tribution observe during cracks propagation. The geometry and materials of
models were chosen to correspond to the actual specimens used in the ex-
periments. The numerical calculations were carried out using the finite ele-
ment program ANSYS 5.4 and by applying the substructure technique. For
comparison the numerical (from FEM) and experimental isochromatic
fringes (o1 - o»), distribution was shown in Figure 3. A finite element mesh



of the model (used for numerical simulation) are presented in Fig.5 and the
stresses oy are shown in Figures 6 and 7.
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Figure 4: A finite element mesh of the model (for numerical simulation).
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Figure 5: Numerical determination of stress distribution (Ansys 5.4). Dis-
tribution of the stresses oy along the crack.

The strain energy release rate G¢ equal in this case to the Rice J-integral:

n dl{l
J = %Gljgljdxz _Ti gds (7)
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or from numerical calculation using the finite element method:
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The values K¢ according to the fracture in the 4-layer were determined from

KY =E G, )
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Figure 6: Numerical determination of stress distribution (Ansys 5.4). Distri-
bution of the stresses o (cracks length a = 6.0 mm).
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Figure 7: Numerical results. (Ansys 5.4). Distribution of the stresses o, cracks
length 1) a = 6.0 mm and 2) a = 9.0 mm, thickness of layers #= 10 mm.



TABLE 2: Experimental and numerical results.
Critical values K¥¢ according to the propagation of the crack.

Crack | Critical Experimental results Numerical results
length | force [MPaVm]

a P [N] 7 7 7 6)

mm] | D kY | kS| owMPal | 6 tMNm] | K& [MPavm]
6.0 265.0 | 1.177]0.8793 | 1.419 2.58 3.08 1.45

9.0 205.0 [0.702 | 1.043 | 1.257 0.152 2.39 1.28

9.8 185.0 | 0.14 | 1.05 | 1.05 0.039 1.97 1.16

CONCLUSIONS

Photoelasticity was shown to be promising method in stress analysis of
beams with various number and orientation of cracks. It is possible to fabri-
cate a model using various photoelastic materials to model multi-layered
structure. Finite element calculations (FEM) were performed in order to
verify the experimentally observed branching phenomenon and the
isochromatic distribution observed during cracks propagation. The agree-
ment between the finite element method predicted isochromatics-fringe
patterns distribution and those determined photoelasticaly was found to be
within 3+5 percent.
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