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ABSTRACT: In the present paper the damage of fiber-reinforced polymeric matrix 
laminates is considered with the aim to examine their mechanical properties. 
The damage mode in the form of intralaminar cracks (“primary matrix cracking”) is 
described in terms of second order, symmetrical damage tensor by Vakulenko and 
Kachanov. It allows for considering the orientation of the defects, which is determined by 
the orientation of the constituent layers. The crack discontinuity parameter is estimated in 
frame of the linear elastic fracture mechanics.  
To describe the changes of the mechanical properties of a body, namely longitudinal Young 
modulus and Poisson ratio, caused by the damage - the constitutive relations by Adkins, 
based on the theory of irreducible integrity basis and polynomial functions are employed.  
Theoretical results obtained due to above procedure are compared with the experimental 
results for carbon/epoxy laminates of cross and angle-ply stacking sequences. 
 
 
INTRODUCTION 
 
The mechanisms of the deterioration of unidirectional fiber-reinforced 
polymeric matrix laminates are quite good clarified by e.g. Reifsnider et al. 
[1]. For the laminate under fatigue load they specified intralaminar matrix 
cracking, cracks coupling and interfacial debonding, delamination, large 
scale fiber breaking and finally formation of a failure path leading to the 
total material deterioration.  

In a case of monotonically increasing tensile load and laminates with off-
axis plies being separated by on-axis plies, the author [2] observed in 
experiments carried out on symmetrical cross-ply and angle-ply specimens, 
that the dominant failure mechanism was connected with intralaminar 
transverse matrix cracking, while the delamination and fibers breaking 
occurred nearly simultaneously with specimen deterioration. Thus, in such a 
case the „life period” is determined mainly by matrix cracking.  

The present paper deals with this specific damage mechanism and its 
influence on material elastic characteristics. 



INTRALAMINAR MATRIX CRACKING 
 
Matrix cracking along fibers in off-axis layers takes place at relatively low 
level of the tensile load and results in an array of cracks with nearly parallel 
midplanes, evenly distributed, laying within an off-axis lamina - see Figure 
1. The important factor determining cracking process and crack density is 
ply orientation angle θm, i.e. the angle between the material axis (1, 2) and 
any arbitrary reference axis (x, y). 

Almost regular pattern of a number of cracks within an individual ply, 
possibility of initiation of similar pattern within the other off-axis plies, as 
well as very small crack size - make approach based on Continuous Damage 
Mechanics (CDM), dealing with continuous description of the discreet crack 
field, an effective tool in the analysis of composite’s intralaminar damaging.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Orientation of intralaminar matrix cracks within off-axis ply. 
 
 
CDM APPROACH FOR COMPOSITE BODY  
 
Let us define a single matrix crack as an elementary damage entity, the 
collection of damage entities of similar geometrical features as damage 
mode - depending on the layers sequence we can distinguish a several 
damage modes in a laminate. The set of damage modes is called “damage”. 

Following paper by Kachanov [3] one can construct at any point on surface 
S of a single crack, second order damage tensor D′ in the form of dyadic 
product of the two vectors, namely: b - the displacement jump vector across 
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a surface S, and n - a unit outward normal to the surface S. Thus, we have: 
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Transition from discreet model to the continuum one is made by averaging 

the damage field (1) over a volume V, containing representative sample of 
„k” damage modes. Confining analysis to the normal discontinuities (cracks 
in mode I), the damage tensor takes the form: 
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where symbol "< >" means an average over volume V, S means the projection 
of crack surface on a crack "midplane", and multiplier β is a measure of 
average crack opening displacement. It is calculated in frame of LEFM with 
use of averaging procedure. Possibility and admissibility of such an 
approach is discussed by Varna et al. [4]. In order to estimate βk, some 
additional assumptions and approximations, as well as proposed by the 
author the concept of „imaginary strip” [5,6], constructed from the considered 
damaged ply and the parts of adjacent layers, are also employed. 

Using geometrical relations arising from the Figure 1, we get finally for 
m-th intralaminar damage mode within the layer in its on-axis configuration 
the following form of only non-zero component of damage tensor:  
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E2 denotes the transverse Young modulus of a ply, cm is an imaginary 

strip width, f (tm /cm) denotes the finite width correction factor for the stress 
intensity factor KI, ρm=1/sm denotes average crack density within m-th 
damaged ply, sm is cracks spacing and vm stands for the ply volume fraction. 
 
 
STIFFNESS MATRIX FOR THE LAMINATE WITH DAMAGE 
 
Stiffness matrix for the single damaged ply in the material axis 
 
To construct the relationship between stress σij, strain εij and damage Dij 
tensors, an approach by Adkins [7] is applied. For the orthotropic body and two 
symmetrical II order kinematic matrices eij, aij he derived the general relation: 
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Aijrs is equal to 1 for i=r and j=s, otherwise - Aijrs is equal to zero, εrst 

denotes the Ricci’s symbol. The terms ttΘ , )1(
t;rsP , )2(
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t;rsQ  and t;rsR are 
quite complex combinations of matrices eij and aij (identified in further 
analysis as, respectively, a strain tensor εij and damage tensor Dij), as well as 
invariant polynomial functions - constructed as linear combinations of the 
elements of irreducible integrity basis [7] (the basis for the orthotropy and 
the two symmetrical II order tensors eij and aij was employed). 

It is assumed here, that stresses are linearly dependent on kinematic 
matrices, what in fact is equivalent to the assumption of strains and damage 
being small quantities. 

From the general form of constitutive equation: 
 
 εCσ =  (5) 
 
we get, after tedious transformations, the stiffness matrix C for on-axis ply 
configuration, decomposed into two parts, namely matrix Co and Cd. The 
first one relates to undamaged ply and can be taken from e.g. [8]. The 
second matrix characterises the change of m-th ply stiffness caused by the 
damage. Matrix Cd for the m-th ply takes the following form: 
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The procedure being used to determine the values of unknown „new” 

material parameters A2 , A6 , A8 , A10 will be given in later part of a paper. 
 
Stiffness matrix for the damaged laminate 
 
The matrices Co and Cd are the basis for calculating stiffness matrix for 
damaged laminate. Taking into account that laminate consists of many 
layers with different orientation in relation to the reference co-ordinate 
system (x, y), these matrices have to be transformed from material axis  
(1, 2) to reference axis (x, y). After transformation - with use of Tsai-Pagano 
procedure described in e.g. [8] - we get transformed reduced stiffness matrix 
for any constituent ply. Now, one can employ the classical lamination theory 
and determine the global extensional stiffness matrix A, which can be 



decomposed into the matrix Ao for „virgin” material and matrix Ad 
describing an influence of the damage state developing within some layers 
on the stiffness of laminate. The matrix Ao depends on volume fraction and 
orientation angle θm of each laminate’s constituent layer, as well as on 
“standard” material characteristics i.e. four independent engineering 
constants for on-axis ply: E1, E2, G12 and ν12. The matrix Ad depends on 
volume fraction, orientation angle θm and damage state within damaged 
layers only. It depends also on “new” material parameters A2, A6, A8 and A10. 

The stiffness matrix Ad is unknown as long as parameters A2, A6, A8, A10 
remain not determined in appropriate tests. Note, that for an orthotropic 
laminate without considering damage, to get full information on laminate 
stiffness the four on-axis constants are needed. When the damage is 
included, we also need to know four constants, which however can not be 
derived from tests carried out on a single ply (like in first case), but on a 
laminate as a whole. The first crack in a single ply means its final fracture 
and the damage in such a sense as in the present paper can not be defined. 
Therefore, the plies stacking sequence must be chosen in such a way, which 
makes the calculations possible, but on the other hand, as easy as possible. 
 
 
MATERIAL CHARACTERISTICS FOR A DAMAGED LAMINATE 
 
The simplest, but adequate laminate configuration is cross-ply laminate 
[0/90n]s, as in such a laminate the damage develops in 90° ply only. 

Using the standard relations [8] between the engineering moduli and 
global extensional stiffness matrix A, after number of transformations, along 
with applying assumption of damage being a small quantity, one can find 
formulas for material parameters A2, A6, A8, A10.  
All needed quantities have been determined from the tensile test of laminate 
specimen. The constants A2, A6 and A10 have been found for specimen code 
[0/903]s, manufactured from carbon/epoxy (Torayca T300/Vicotex 174) 
„prepreg” tape Vicotex NCHR 174B. The details of specimens’ preparation, 
their testing and test results are given in [2]. The constant A8 related to a 
shear modulus only, has not been determined. Besides, it was assumed that 
transverse Young modulus was constant, because transverse cracks within 
90° ply do not produce the change of transverse stiffness. The following 
values have been found: A2 = -192.0 GPa, A6 = -34.7 GPa, A10 = -258.0 GPa. 
These values allow for calculating the current values of engineering moduli 
of any laminate. 



RESULTS AND CONCLUSIONS 
 
An example of the standard procedure for estimation of a laminate stiffness 
changes, based on strength analysis, is shown in the Fig. 2. Partial ply discount 
method (PPDM) and Azzi-Tsai-Hill criterion are used in calculations. The 
substantial differences - both quantitative and qualitative - between axial Young 
modulus (YM) and major Poisson ratio (PR), calculated on PPDM basis and 
those taken from tests are easily visible. It is general observation that PPDM 
underestimates the stiffness of a damaged laminate. The other observation is 
that PPDM leads to somewhat unreasonable prediction of "step" change of 
the engineering moduli instead of gradual, as it is observed in tests.  

In order to verify the proposed theoretical model of the stiffness changes, 
as well as to compare it with PPDM method the two sets of specimens, 
namely [0/90n]s cross-ply and [-20/+20/-α2/-20/+20/+α2/-20/+20]s angle-ply, 
were manufactured and tested under tensile load [2]. 

In the Fig. 3 dimensionless (actual to the initial value ratio) YM and PR 
along with crack density are plotted as functions of applied stress for 
[0/902]s and [0/904]s specimens. The reduction in PR is as big as 60% for 
[0/902]s specimen and 90% for [0/904]s. Test data show that PR is reduced 
more when load increase is accompanied by growth of crack density. YM is 
much less sensitive on stress level and crack density than PR. The reduction 
of YM was measured as big as 13% for [0/904]s specimen and 7% for the 
specimen [0/902]s. Reduction of engineering moduli is the biggest for the 
thicker specimen, while number of observed cracks in this case is the smallest. 
Thus, stiffness changes are not only damage, but also thickness dependent. 
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Figure 2: Dimensionless YM and PR - theoretical predictions and test data. 
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Figure 3: Dimensionless YM, PR and crack density as functions of stress. 
 
Predictions of YM following from the proposed model match test data with 

very good accuracy for each cross-ply specimen and for most of angle-ply 
specimens. Theoretical predictions and test data do not differ more than 10%. 

However, it must be pointed out that for angle-ply specimens the 
dependence of YM changes on the crack density was very poor, if any. In one 
case YM was almost constant within entire range of applied load, despite of 
numerous cracks and in the other one we observed reduction of YM equal to 
approx. 9%, whilst only single cracks have been visible. For the last case the 
present model was not able to predict YM change, as for a low crack density 
(or no crack at all) it must deliver the same result as for a nearly virgin 
material (or entirely virgin) and in fact it does. Therefore, the observed 
mismatch does not mean that the model is unreasonable. 



The fitting of calculated and measured PR is in general not so good as in 
case of YM, but is significantly better than that given by PPDM. For cross-
ply specimens the maximum difference is as big as approx. 30%, but in 
most cases is much less. The mechanical behaviour of angle-ply specimens 
is in general quite different. For most specimens the experimental results 
were completely out of expectations and the results obtained for cross-ply 
orientations. Instead of PR reduction along with load and damage growth we 
observed its progressive increase. The maximum increments for specimens 
being tested were within the range (3÷18 %). It is reasonable to assume that 
growth of PR is caused by laminate layout and resulting non-linear transverse 
deformations recorded during the tests. Intralaminar cracks reduce slightly 
this growth, but they are not able to cause absolute reduction of PR. 

Let us finally conclude that: 
∗ for cross-ply laminates both YM and PR are reduced due to a damage 

development. YM is much less sensitive on crack density than PR, 
∗ for angle-ply laminates an influence of damage on stiffness is 

insignificant, if any. Despite of damage development the growth of PR 
was observed. Reduction of YM was noticed only for specific 
orientations and it was not caused by cracks, 

∗ stiffness changes may not to be an appropriate measure of damage state. 
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