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ABSTRACT: Service loading must be usually considered as a stochastic process. In order
to evaluate a fatigue damage under such a loading, the cumulative damage representation
over closed cycles is accepted. Therefore, the method of loading process simulation must
guarantee all statistical process characteristics (probability density, power spectral
density), discontinuous events occurrence (operating manoeuvres, shock and impact
effects), as well as complete loading history with respect to the closed cycles series.
Moreover, in the case of multiaxial loading , we must respect cross-correlated parameters
and mutual dependence of discrete random events. In the paper, the algorithm of multiaxial
loading simulation is presented. The method allows continuous monitoring of the damaging
process, so that a fatigue life prediction of structure components under complex loading
will be more accurate and effective.

INTRODUCTION

For a fatigue damage development, stress condition in the structure surface
is important, especially in the point of stress concentration. Introducing a
co-ordination system x, y, z in this point, whereby axis z is identical with a
perpendicular to a surface area, we can investigate normal stresses σx, σy and
a shear stress τz, which are generated in a material as a response to external
excitation. There would be no problems if the stresses are not correlated,
because all stresses would be then simulated separately as individual
loading processes. Unfortunately, in real operation, we must consider a
mutual correlation of the stresses, and that is a serious complication of the
simulation.

Let us present a procedure how to “on-line” simulate such the processes.
We will proceed from knowledge of their statistical characteristics, like a
mean value, variance, auto-correlation function and cross-correlation
function, which must be identified before a simulation period, on the basis
of measured and evaluated data of a real load history. The principle of the
procedure is based on the method of auto-regressive filtering, whereby



formerly an ordinate of the first process is generated, subsequently an
ordinate of the second process is generated and eventually an ordinate of the
last process is generated, and all procedure is continuously repeated.

SIMULATION OF THE FIRST PROCESS

Let us consider, for example, that the normal stress σx is the first simulated
process. Ordinates σx,i of the process can be generated independently on
other stresses according to relationship [1]
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where 2
xs  is a variance of the loading σx and γx,j are ordinates of the standard

auto-correlation function of the loading σx, i.e.

,
s

K
2
x

j,x
j,x =γ                                              (3)

where ( )( )∑ −−
−

=
=

−∞→

n

1i
xji,xxi,xnj,x mm

1n
1limK σσ  is an auto-correlation

function of the process σx, which is determined in the preliminary period.
Filtering coefficients can be identified solving of the system of N1

algebraic equations
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In the most of practical cases, we can suppose that loading process has a
gaussian nature, then a distribution of the white noise is gaussian, too. In the
case of non-gaussian processes, some complications can arise owing to a
central limit theorem. In the last resort, the procedure should be modified
according to [2].

SIMULATION OF THE SECOND PROCESS

Let us consider that a normal stress σy, which is stochastically dependent on
σx, is the second simulated process. Ordinates σy,i of this process can be
generated as follows [3]
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where my is a mean value of the loading σy, a2,i are ordinates of generated
white noise with zero mean value and ( ){ } ( ){ } 2,21,2 N
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After modification of Eq. 6, we get
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After multiplication of both sides of Eq. 7 by an expression ( )yli,y m−−σ ,
for l = 0, 1, 2, … , N2,2, we get
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If we consider that an auto-correlation function of the process σy is
defined by the relationship
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and a cross-correlation function of processes σx and σy is defined as
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we will get using a transformation of Eq. 8
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where we suppose a symmetry of the cross-correlation function.
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function of a process σy and white noise a2. Considering that a basic feature
of a white noise is its non-correlation, we can rewrite Eq. 11 into form
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After multiplication of both sides of Eq. 7 by the expression ( )xli,x m−−σ ,
for l = 0, 1, 2, … , N2,1 , we get
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 When we make, similarly like of Eq. 8, a transformation of Eq. 13, we
will get
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because white noise a2 and a process σx are not cross-correlated.
Then Eq. 12 and Eq. 14 represent (N2,1 + N2,2 + 2) algebraic equations

for the same number of unknowns: ( ){ } 1,2N
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SIMULATION OF THE THIRD PROCESS

It remains the last simulated process – shear stress τz, which is stochastically
dependent on normal stresses σx and σy. Ordinates of the process τz can be
generated according to relationship [3]
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noise with zero mean value and ( ){ } 1,3N
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Shifting a term mz into the left side of Eq. 15, after multiplication of both

sides of the modified equation by the expression ( )zli,z m−−τ , for l = 0, 1, 2,
… , N3,3 , and after subsequent transformation, similarly like in the previous
paragraph, we get a system of (N3,3 + 1) algebraic equations
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where 2
a3

s  is a variance of white noise a3, Kz is an auto-correlation function
of the process τz and Kxz, Kyz are cross-correlation functions of processes σx

and τz, respectively σy and τz.
Similarly, after multiplication of a modified Eq. 15 by the term

( )yli,y m−−σ , for l = 0, 1, 2, … , N3,2, and after subsequent transformation,
we get a system of (N3,2+1) algebraic equations
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In the same way, after multiplication by ( )xli,x m−−σ , for l = 0, 1, 2, … ,
N3,1, we get (N3,1+1) algebraic equations
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Eq. 16, 17 and 18 represent altogether (N3,1 + N3,2 + N3,3 + 3) algebraic
equations for the same number of unknowns: ( ){ } 1,3N
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ESTIMATION OF A FATIGUE LIFE

Simulated stresses σx, σy and τz can be immediately used as control
parameters for loading systems. Service life then can be predicted
experimentally.

For computational estimation of fatigue life, we can make a conversion
into uniaxial loading and use knowledge of a cumulative damage theory for
such a case. Then, we can calculate ordinates of equivalent uniaxial stress
according to mostly used Mises hypothesis, “on-line” to the simulation
procedure, using a relationship
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For multiaxial loading, although, there is a problem that a direction of a
principal stress is continuously changed. It is well-known that a direction of
principal stress is deviated from x-axis in the xy-plane by the angle
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Therefore, it is necessary for an effective conversion that this angle
should be constant in any moment, i.e. it must hold a condition
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According to this presumption, we can then convert a biaxial loading into
uniaxial one, and from the generated ordinates σeq,i, we can identify, using a
rainflow algorithm, both loading amplitudes σeq,a,i and corresponding mean
values σeq,m,i, see [4].

If we use a procedure shown in [5], we could also calculate in each
moment a correction to residual deformations according to the general
relationship
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where n and K are parameters of a cyclic deformation curve of a material
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where εe is an elastic strain component and { }N
1ii =σ  are stresses

corresponding to peaks of unclosed hysteresis loops during a time history in
a stress-strain diagram.

Then we can determine ordinates of an equivalent stress amplitude for a
reversed cycle in the form
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where parameters ψσ and ψε can be determined from the triaxial  Haigh
diagram [5].

Now, we must determine a number n0 of stress amplitude levels, and
stress amplitudes  calculated according to Eq. 24 must by assorted into these
levels as { } 0n
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σ  values. For estimation of number of cycles to failure Nf,

we can then use the relationship [6]
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where k is a material constant (usually k≈1), σC is an endurance limit, N0 is a
corresponding number of cycles, q is the slope of a Wöhler curve for
reversed loading and p is an occurrence probability.

CONCLUSIONS

According to the method, structure design would be more effective than
according to standard methods, and material can be economised, too.
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