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ABSTRACT: The paper deals with the effect of 3.5% NaCl solution on long fatigue crack
growth in the thin sheet wrought aluminium alloy 6013 T6. A formalism aimed to provide a
quantitative model of the environmental effect is summarized and extended. The formalism
is essentially based on the concept of a rate-controlling step and the application of the
method of dimensional analysis to the individual steps. The sensitivity of the resulting
model to distinct modifications of the underlying assumptions is discussed.

INTRODUCTION

The starting point of the present investigation is the observation of  fatigue
crack growth in the aluminium alloys 6013 T6 in 3.5% NaCl solution at
rates in excess of those in both laboratory air and deionized water [1,2]. As
stress corrosion cracking cannot be the reason for the increased fatigue
crack growth rates [3], an alternative LEFM-based model was developed
and applied to a set of measurements of constant-amplitude long fatigue
crack growth in the range of frequencies, f, from 25 mHz to 40 Hz and in
the ∆K range from about 8 to about 30 MPa m1/2 [1]. The model is based on
the assumption of a single multiple-step mechanism being responsible for
the increased crack growth rates. Of these steps the slowest one is assumed
to control the crack growth rate [4]. The expressions derived were then
fitted to the measurements. However, as mentioned in [1] a good fit alone
cannot be considered enough evidence for both the validity of the model
assumptions and the interpretation of the rate-controlling steps.
    In the present paper, the formalism applied in [1] is investigated in some
more detail. First, a list of assumptions along with comments is given. Both
the formalism and its application to the aluminium alloy 6013 T6 are
summarized. The model is then extended in order to empirically take into
account the simultaneous contribution of more than one step to the rate
control of environmental fatigue crack growth. Finally, the sensitivity of the
resulting model to distinct modifications of the assumptions is considered.



ASSUMPTIONS

K-Validity
The assumption of applicability of linear-elastic fracture mechanics (K-
validity) is discussed by McClintock [5]. It is required that cracks are long
compared to the microstructural size and applied stresses are low enough to
limit the size of the plastic zone relative to both crack length and ligament.
In the case of K-valid fatigue crack growth the stress intensity factor range,
∆K, is the first parameter required. Implicitly, another consequence is the
requirement to incorporate the modulus of elasticity, E, in the analysis. It is
understood that the application of ∆K (instead of the effective value, ∆Keff)
and E (instead of other elastic moduli or the yield stress, σy) may be the
subject of some debate. As the formalism does not fundamentally depend on
these details, this matter will be discussed later.

Number of Rate-Controlling Steps
As mentioned in the introduction a single multiple-step mechanism of the
effect of the environment on fatigue crack growth is assumed. The concept
of a rate-controlling step [4] means that under certain conditions the slowest
one of several successive steps (i. e. the one that imposes the strongest
restriction to the environment-assisted fatigue crack growth rate) is the rate-
controlling one. In the original version of the present model [1] a number of
three potential rate-controlling steps have been taken into account. These
steps had been assumed to act independently of each other. The extended
version to be presented will take into account the possibility of simultaneous
contribution to the rate control by more than one step. The effect of
incorporating a forth potential rate-controlling step will be touched.

Nature of Rate-Controlling Steps
Each one of the potential rate-controlling steps is assumed to be
characterized by a single (or effective) physical quantity. The formalism
turns out to depend only on the physical dimensions of these quantities but
not on the nature of the underlying processes. Therefore, this assumption is
related to the possibility to combine two steps characterized by physical
quantities of the same dimension into a single step characterized by an
effective quantity. In this way, the formalism is strongly simplified, whereas
possible complications are transferred to the interpretation of the results. In
the original version of the model the three potential rate-controlling steps
are assumed to be characterized by quantities of physical dimensions T-1,
L/T, and L2/T, where T and L denote the physical dimensions of time and



length, respectively. These quantities can be interpreted to be a rate of
production, q, of directly damaging hydrogen or indirectly damaging (by
destabilizing the surface layer) chloride ions, the rate of thickness increase,
v, of a surface layer on the freshly formed metal surface, and an effective
coefficient of diffusion, D, of hydrogen to the embrittlement sites in front of
the crack tip or to transporting dislocations. However, it is important to note
that the formalism does not depend on these interpretations.

The Reference Environment
The proper selection of a reference environment is related to the assumption
of a single (if multiple-step) mechanism already made above. The effect of
the environment is isolated by means of the introduction of the dimension-
less damage ratio, η=(da/dN)e/(da/dN)ref. In [1] data measured in laboratory
air was taken as reference with arguments supporting this idea given. In
particular, deionized water might be a better reference, but no significant
differences between fatigue crack growth rates in air and deionized water
were found at least at f=20 Hz [2]. Thus the present approach is supported.

FORMALISM AND MODEL

Summary of the Original Formalism
The formalism consists of the following steps [1]:

• According to the experimental observations and the above assumptions
the damage ratio is a function of ∆K, E, f, and either q, or v, or D.

• The Π-theorem of dimensional analysis is applied to these three cases.
The results are representations of η as a function, Φ, of dimensionless
power-law monomials of the quantities considered [6]. The results are:

( )1
a qf −Φ=η (1a)

( )122
b fvEK −−∆Φ=η (1b)

( )2/12/122
c DfEK −−∆Φ=η (1c)

• At this point additional information on the type of dependence is
needed. If the dependence of η on one particular parameter is known,
the dependence on the other ones will also be known simultaneously. In



the original version of the model, η was assumed to be proportional to q,
inverse proportional to v, and proportional to the mean diffusional path,
(D/f)1/2, respectively. This yields expressions for the functions, Φ:

qfC 1
aa

−=Φ (2a)

122
bb fvEKC −−∆=Φ (2b)

2/12/122
cc DfEKC −−∆=Φ (2c)

Ca, Cb, and Cc are dimensionless constants.
• In order to identify the ranges of ∆K and f, where a certain step is the

slowest one, the above expressions are equated to one another. In a
double-logarithmic f-∆K plot the resulting power-law equations between
∆K and f are represented by straight lines. These lines separate the
regions in the f-∆K plane, where the respective steps are rate controlling.

• The lines defined by the conditions Φ=1 bound these regions against
the region outside, where no environmental effect is present.

• In order to obtain a graphical representation of the „rate-control map“,
frequency, f, and stress intensity factor range, ∆K, have to be normalized
by the model parameters, fS and ∆KS. Furthermore, a particular base, b,
of the logarithm has to be introduced:

( ) ( ) ( )[ ] 5/112
c

21
b

4
aS DCvCqCf

−−= (3a)

( ) ( )( )[ ] 10/122
c

1
b

3
aS DCvCqCEK −−=∆ (3b)

b=Caq/fS (3c)

    The resulting rate-control map is presented in Fig. 1. If in a fatigue crack
growth test (at varying ∆K and/or f) one of the lines in Fig. 1 is crossed, a
transition in the crack growth behaviour is expected. Such transitions have
indeed been observed in [1]. By fitting individual lines of the map to the
measured locations of the corresponding transitions the model parameters fS,
∆KS, and b, have been estimated. The physical quantities characterizing the
individual rate-controlling steps can then be calculated via Eqs. 3. In this
way the general model, Eqs. 1 or 2, can be applied to a particular material, if
the model assumptions are prooved to be valid.



Figure 1: Normalized double-logarithmic rate-control map [1]

Extension of the Original Formalism
As a single rate-controlling step was assumed, the model outlined above is
not able to predict crack growth rates in the vicinity of the bounds of the
rate-control map. In order to take into account the simultaneous operation of
more than one rate-controlling step the damage ratio is considered the
analogue of the spring constants (or conductivities) in a series of springs (or
electric resistors). The resulting model reads:

( ) ( )refe dN/dadN/da η= (4a)

cba /1/1/1

1
1

Φ+Φ+Φ
+=η (4b)

The process-competition model for the crack growth mechanisms in the
aggressive and in the reference environment applied to obtain the rate-
control map is substituted by the superposition model represented by the
first plus sign in Eq. 4b. The functions Φa, Φb, and Φc can be replaced by the
expressions given in Eqs. 2, if the corresponding assumptions are justified.
Using the constants obtained by the fit performed in [1] for the Al alloy
6013 T6 a 3D representation of Eq. 4b is obtained (Fig. 2).
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Figure 2: 3D mesh representation of Eq. 4b applied to 6013 T6

DISCUSSION

K-Validity
Within the range of K-validity the opened-crack part of ∆K may be a better
driving force parameter than the nominal value of ∆K. For the particular
case of the aluminium alloy 6013 T6 at f=20 Hz no significant effect of a
3.5% NaCl solution on the amount of crack closure with respect to air was
observed [1]. Furthermore, the plateau of the crack growth curves obtained
for 6013 T6 at f=20 Hz are in the same ∆K range for R=0.1 and R=0.5 [1].
Thus the use of ∆K is justified at a constant value of the stress ratio, R.
    The modulus of elasticity, E, the shear modulus, µ, the yield stress, σy,
(and others) are interchangable material parameters from the viewpoint of
dimensional analysis. Nevertheless, the values of the fitting constants are
essentially affected. If E is used, the estimated value of D~10-13 m2/s is of
the order of magnitude of the coefficient of diffusion of H in the Al lattice
[7]. In this respect the alternative use of µ or σy would cause deviations by
many orders of magnitude. Another argument for the use of E instead of σy

is given by the similarity of the environmental effects for the alloys 6013 T6
and 6013 T4, which are represented by equal values of the elastic moduli
but different values of the yield stress.



   The assumption of K-validity can be violated by high stresses and/or short
cracks. Under certain conditions the problem can be solved by using ∆J/E or
∆CTOD [5] instead of the term (∆K/E)2 (the dimension of each is a length)
throughout the dimensional analysis. Typically, however, additional para-
meters, such as yield stress, hardening exponent, and a microstructural size
(short cracks) have to be introduced. Therefore, the functions, Φ, in Eqs. 1
become multiparametric ones and the present formalism will fail to work.

Number of Rate-Controlling Steps
The formalism applied in the present paper is generally applicable to any
number of rate-controlling steps. In the present power-law approximation
each one of the rate-controlling steps can be represented by a plane in a 3D
f-∆K-η (x-y-z) co-ordinate system. The possible projective relations
between three planes in 3D are well manageable but the introduction of any
new plane introduces a variety of new relations. Some types of relations
between four planes are indicated in Fig. 3. While the graphical appearence
of the rate-control map is strongly affected by the number of rate-controlling
steps, the analytical representation of the model in terms of Eq. 4b is only
affected by the number of terms in the denominator.

Figure 3: Possible projective variants of the rate-control map
in the case of four rate-controlling steps

Nature of Rate-Controlling Steps
First, the present model of environment-sensitive fatigue crack growth is
affected by the nature of the rate-controlling steps through the physical
dimensions of the characteristic quantities. The formalism works for any
combination of independent physical dimensions. In general, a modification
of the physical dimension of one of the characteristic quantities affects the
exponents in each one of the Eqs. 1 and 2 simultaneously.
    Second, the model is affected by the nature of the rate-controlling steps
via the type of function, Φ, in Eqs. 1. The power-law dependencies of Eqs. 2
are only a special case partly motivated by mechanism-based arguments and
partly supported by the agreement of the theoretical slopes of lines AB and



AC in Fig. 1 with the measured frequency dependence of the respective
transition points [1]. The formalism works independently of the type of
function, but for the formalism to be explicitly applied the functions have to
be known. The validity of a power-law approximation is limited by the
presence of both a threshold and a saturation concentration of the damaging
species. The threshold condition can be identified with lines AB, BC, and
CA in the rate-control map (Fig. 1). The error of η according to Eq. 4b
caused by a threshold is small. The effect of saturation is a cut-off of the
surface in Fig. 2 by a plane parallel to the f-∆K plane. In terms of the rate-
control map this effect is represented by the left graph in Fig. 3.

Reference Environment
The present formalism can be applied, if the increase of the crack growth
rates with respect to vacuum is due to a single mechanism. Otherwise, the
individual contributions have to be carefully separated prior to application.
In this respect deionized water would be the favourable reference medium
but referring to vacuum data afterwards may provide additional information.

CONCLUSION

The sensitivity of the formalism and the resulting model of environment-
assisted fatigue crack growth to modifications of the assumptions has been
analysed. The formalism is characterized by a broad applicability. The
model as applied to the aluminium alloy 6013 T6 is partly supported.
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