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Abstract:  This paper uses R6 to examine the effects of correlated input data on estimates
of failure probability.  For 100% positive and 100% negative correlation between fracture
toughness and yield stress, the failure probability can be evaluated ‘exactly’ by integrating
the tails of distributions up to points which can be determined.  Approximate estimates of
failure probability are introduced, and shown to be upper and lower bound estimates for
100% negative correlation.  The ‘exact’ and approximate estimates of failure probability
are compared with some Monte Carlo simulations for a flawed plate under membrane
loading.  For 100% negative correlation, the upper and lower bound estimates are close to
each other when the failure probability is low (~10-5).

INTRODUCTION

R6 [1] presents methods for estimating the probability of failure, Pf,
allowing for variability in inputs such as defect size, fracture toughness and
yield stress, using integration and Monte Carlo methods, or approximately
from margins on the failure assessment diagram (FAD) [2].  With Monte
Carlo methods, correlations between input quantities may be included [3].
     The approximate methods in [1, 2] are restricted to cases where input
quantities are not correlated.  This paper addresses extension of simplified
methods to include correlation.  First, some background is given on
correlations in Normal distributions.  This is used to address effects of
correlations on R6 assessment points and associated failure probabilities.
Some special cases and approximate estimates of Pf are examined.

DISTRIBUTION FUNCTIONS WITH CORRELATION

Two random variables X, Y are said to be distributed as a bivariate Normal
distribution with means and variances (mx, my) and ),( 2

y
2
x σσ , respectively,

and correlation ρ if the joint probability that X is less than or equal to x and
Y is less than or equal to y is given, following [4], by:
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where, using standardised normal variates, with –1<ρ<1,

h = (x-mx)/σx k = (y-my)/σy (2)
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In [4], some properties and numerical values for g are presented and three
special cases are considered.  These are discussed further here.

Uncorrelated Variables
The case ρ = 0 corresponds to X and Y being independent and

)k(P)h(P}yY,xXPr{ =≤≤ (4)

where P(x) is the cumulative normal distribution function.  Thus the joint
probability is simply the product of the probabilities that xX ≤  and yY ≤ .

100% Positive Correlation
For 100% positive correlation (ρ = 1) values X>mx are associated with
values Y>my.  If X takes a value x0, Y takes the value

)mx)(/(my x0xyy0 −σσ+= (5)
and [4]

hk),k(P}yY,xXPr{
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≤=≤≤
≤=≤≤

(6)

Thus, the joint probability reduces to evaluation of a single distribution
function since Eq. 5 ensures that if 00 yYthenxX ≤≤ .

100% Negative Correlation
For 100% negative correlation (ρ = -1) values X>mx are associated with
values Y<my.  If X takes a value, x0, Y takes the value

)mx)(/(my x0xyy0 −σσ−= (7)
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and [4]
0kh1)k(P)h(P}yY,xXPr{ >+−+=≤≤ (8)

0kh0}yY,xXPr{ ≤+=≤≤ (9)

Eq. 9 shows that certain combinations are not possible: e.g. both X and Y
cannot be below their mean values.

EFFECT OF CORRELATIONS ON R6 ASSESSMENT POINTS

The two variables X and Y are taken as the 0.2% proof stress, ,yσ  and the
fracture toughness, Kmat, described by normal distributions with means

maty K,σ  and variances 2
K

2
maty

,σσσ .  Resulting variations in the R6 parameters
Lr and Kr, for primary loading only are:

)//(LL yyrr σσ= (10)

)K/K/(KK matmatrr = (11)

where rr KandL are the values based on mean properties.

Uncorrelated Variables
When maty Kandσ are uncorrelated, Lr and Kr are independent.  An

approximate failure probability, A
fP , in this case has been given [2] as

)k(P)h(PP 11
A
f += (12)

where
σ

σ
σ σ−σ= F/]F1[h

yy1 (13)
K

K
K

mat1 F/]F1[Kk
mat

σ−= (14)

Fσ and FK are reserve factors on toughness and yield stress, respectively, for
the point )K,L( rr based on mean values.  These are depicted in Fig. 1.
     For distributions other than normal, the terms P(h1) and P(k1) in Eq. 12
are replaced by the integrals of the tails of the yield stress and fracture
toughness distributions up to ),F/K(and)F/( K

maty
σσ  respectively.
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Figure 1 R6 reserve factors for simple primary loading

100% Positive Correlation
Combining Eqs 5, 10 and 11 defines the locus on the FAD:
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When the yield stress is fixed, the locus is the vertical line O’AC in Fig. 1
and Pf is P(k1) with k1 given by Eq. 14.  Similarly, when the toughness is
fixed, Pf is P(h1) with h1 given by Eq. 13.  When the toughness and yield
stress have equal coefficients of variation, Eq. 15 is the straight line OAD in
Fig. 1.  Then Pf is obtained from the load factor FL in Fig. 1 as

)h(P)1(P 2f ==ρ (16)
where
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     Some results for equal coefficients of variation with 100% positive
correlation have been reported in [3], using Monte Carlo methods.  A range
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of load factors were generated by varying the crack size in a simple tension
geometry.  Table 1 compares the results with Eq. 16.  Agreement is
generally well within 1%.  At low failure probabilities (~10-5) the larger
differences are due to the finite sampling in the Monte Carlo approach.

Table 1 Pf  for 100% Positive Correlation

Defect
Size
a/w

rL rK FL
Pf from

Monte Carlo
[3]

Pf from
Eq. 16

0.23 0.434 0.255 2.29 1.16 10-5 1.23 10-5

0.34 0.506 0.366 1.83 3.26 10-4 3.32 10-4

0.39 0.547 0.432 1.64 1.72 10-3 1.71 10-3

0.43 0.585 0.493 1.49 6.64 10-3 6.69 10-3

0.48 0.641 0.585 1.31 3.61 10-2 3.62 10-2

0.53 0.709 0.694 1.15 0.165 0.165
0.58 0.794 0.825 0.99 0.517 0.517
0.62 0.877 0.943 0.88 0.841 0.840

Figure 2 100% positive correlation: the curves are for the different
ratios of the coefficients of variation for yield stress and toughness
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When the coefficients of variation for toughness and yield stress differ, the
locus of assessment points defined by Eq. 15 is a curve on the FAD, Fig. 2.
If this intersects the FAD at the point ),K,L( *

r
*
r  then

Pf(ρ=1) = P(h3) (18)
where

mat

y

K
*
rrmat

*
rry3

/)1K/K(K

/)1L/L(h

σ−=

σ−σ= σ
(19)

100% Negative Correlation
Combining Eqs 7, 10 and 11 gives the locus of assessment points
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shown in Fig. 3 for equal coefficients of variation for yield stress and
toughness.
     One possibility in Fig. 3 is that the locus always lies outside the FAD.
This corresponds to the result of Eq. 9 where there is zero probability that
the toughness and yield stress are both sufficiently high to avoid failure.

Figure 3 Loci of assessment points for 100% negative correlation
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     A more likely event is that the point )K,L( rr  lies inside the FAD.  Then,
the locus intersects the FAD at two points )K,L( )1(

r
)1(

r  and )K,L( )2(
r

)2(
r ,

shown in Fig. 3.  This corresponds to the result of Eq. 8 and

)k(P)h(P)1(P 44f +=−=ρ (21)
where

y
/)1L/L(h )2(

rry4 σσ−σ= (22)

matK
)1(

rrmat4 /)1K/K(Kk σ−= (23)

     Comparing Figs. 1 and 3, for 100% negative correlation

A
ff P)1(P <−=ρ (24)

     Therefore, while the estimates in [3] are approximations in general, for
100% negative correlation the estimates provide an upper bound to Pf.  A
lower bound is obtained, noting that ,1KandLL )1(

r
max
r

)2(
r ≤≤  as

)k(P)h(PP)1(P 55
B
ff +≡>−=ρ  (25)

where

y
/)1L/L(h max

rry5 σσ−σ= (26)

matKrmat5 /)1K(Kk σ−= (27)

since max
rrr LL and 1K <<  are limits to the FAD.  For the lower curve in Fig.

3 this approximation would be accurate since .L~Land1~K max
r

)2(
r

)1(
r −−

     Results from [3], using Monte Carlo methods for 1ρ −=  are compared
with the above approaches in Table 2.  For loci fully outside the FAD, Pf is
1.0*.  For other cases, Pf is given by Eq. 21 which gives results close to
those from Monte Carlo methods. The results demonstrate the bounding
properties of inequalities (24) and (25).  The bounds can be close when Pf is
dominated by fracture or collapse.
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Table 2 Failure Probability for 100% Negative Correlation )1( −=ρ

Defect
Size
a/w

)1(
rK )2(

rL
Pf from

Monte Carlo
[3], 1−=ρ

Pf from
Eq. 21

A
fP  from
Eq. 12

B
fP  from
Eq. 25

0.23 0.991 1 1.03 10-5 1.11 10-5 1.11 10-5 1.11 10-5

0.34 0.986 1 1.06 10-4 1.08 10-4 1.08 10-4 1.07 10-4

0.39 0.982 1 3.58 10-4 3.57 10-4 3.66 10-4 3.54 10-4

0.43 0.977 1 1.04 10-3 1.04 10-3 1.14 10-3 1.01 10-3

0.48 0.966 1 5.04 10-3 5.10 10-3 7.51 10-3 4.49 10-3

0.53 0.943 1 3.84 10-2 3.82 10-2 0.107 2.53 10-2

0.58 - - 1.0 1.0* 1.07 0.155
0.64 - - 1.0 1.0* 2.0 0.809

General Case
In the general case, simple loci of the type depicted in Figs. 2 and 3 are not
produced.  Instead, there is a distribution of values of Kr associated with any
value of Lr.  Pf may be evaluated using the general solution of Eq. 3 noting
that normal distributions of yσ  and Kmat lead to normal distributions of
(1/Lr) and (1/Kr).  Pf follows by integrating the function g of Eq. 3 over the
region inside the transformation of the FAD into 1/Lr, 1/Kr space.  The
lower bound of Eq. 25 may be evaluated noting that  Kr<1 and max

rr LL <
transform to max

rrr L/1)(1/L and 1)K/1( >> .

Applications for Non-Normal Distributions
The results above have been presented for Normal distributions.  However,
other forms such as Weibull or log-normal are likely to be used.  100%
positive or 100% negative correlation corresponds to a one-to-one
relationship between toughness and yield stress.  This leads to a one-to-one
relationship between Lr and Kr.  Therefore, loci of the type shown in Figs. 2
and 3 may readily be constructed and the intersection(s) with the FAD
obtained.  For 100% positive correlation, there are values *

mat
*
y K,σ

corresponding to the point )K,L( *
r

*
r  in Fig. 2.  Then Pf is

∫
σ

σσ σΦ=σσ==ρ
*
y

0

*
yyyf )(d)(p)1(P (28)

where )(p yσσ  is the probability density function of yield stress and σΦ  is
the associated cumulative function.  Eq. 28 is the generalisation of Eq. 18 to
non-normal distributions.  For 100% negative correlation, Eq. 21 becomes
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)K()()1(P )1(
matK

)2(
yf Φ+σΦ=−=ρ σ (29)

where KΦ  is the cumulative function of toughness and )1(
mat

)2(
y K,σ  are the

values at points )1(
r

)2(
r KandL  in Fig. 3.

     The approximate estimates of Eqs 12 and 25 become

)F/K()F/(P K
matKy

A
f Φ+σΦ= σ

σ (30)

)KK()L/L(P matrK
max
ryr

B
f Φ+σΦ= σ (31)

     As 100% negative correlation leads to values of yy σ>σ  associated with

,KK matmat <  and vice versa, the loci of assessment points have the same
shape as depicted in Fig. 3 for non-normal distributions.  Therefore, again

B
ff

A
f P)1(PP ≤−=ρ≤ (32)

CLOSING REMARKS

This paper has indicated how correlations between yield stress and
toughness can be treated using the R6 FAD.  Exact methods have been
given for 100% negative and 100% positive correlation.  Upper and lower
bound estimates have been given for 100% negative correlation.  The upper
bound is identical to an approximation currently in R6 for uncorrelated data.
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