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ABSTRACT

In order to evaluate the mechanical behavior around stationary small scale yielding crack tip for pla
strain, the asymptotic governing equation and their boundary conditions are formulated by the light
fracture mechanisms. A total deformation theory of plasticity with a power-law hardening is employec
The analysis of the near-tip fields are obtained for both tensile and shear boundary conditions, the comp
range of mixity parameter and different strain hardening levels. Details of the mixed-mode fracture und
mixed-mode loading and change fracture mechanism are also given. It is established that the intersec
area of separate curves in coordinates of mixity paramei@ehus crack growth direction, corresponding

to each (between two) dominating fracture mechanism, form small zone of the really mixed mode fractu
The position of this zone of a crack unstable equilibrium correspond to change of the leading fractu
mechanism or to the determination of the mixed mode ratio at which the transition of the fracture moc
occur. The numerical values of elastic-plastic parameters describing of transition zone are well agreed w
experimental data found in the literature which show that all change in fracture mode take place at a relat
constant value of mixity parameter. By means of numerical investigation of mixed-mode loading problen
it is obtained that there is only one total relationship between mixity paramgtardvhumerical constant

I, for both fracture mechanisms.

INTRODUCTION

One of the important points is that, for a large number of mixed-mode crack growth problems of which w
are aware, there are two fundamentally distinct classes of growth: maximum principal stress-dominated &
shear-dominated. This is true regardless of whether we consider static or cyclic loading conditions. Anott
point is the intimate connection of the crack tip displacement concept to mixed-mode elastic-plastic fractL
and fatigue processes. Several elastic-plastic finite element analyses [1-5] and experimental investigati
[6-14] showed non-uniform deformation and damage fields near an initially smooth notch tip under mixe
mode loading. Aoket al [1] predict that two competing process zone may be associated with the crack tip
one process zone, dominated by tensile stress and the other dominated by shear stress. The side ¢
notch, dominated by tensile stress, blunts, while the other side, dominated by shear strains, sharpens. It
shown in [11-14] that the stable crack under mixed-mode loading conditions propagates either as a moc
crack approximately in the direction normal to the maximum tangential stresses or as a shear crack in
maximum strain direction. It is possible that material failure due to shear crack propagation in the directic
of maximum shear strains would occur in the localized band of intense plastic strain (referred in [11] :
“shear crack”). The highest tensile hydrostatic stress and notch-tip constraint always occur near the blun



part of the notch. In this region the crack growth direction is normal to the maximum tensile stresses. Tt
type of mixed-mode ductile fracture mechanism is referred in [11] as “tensile crack” growth. It is clear fror
the preceding discussion that there are two competing fracture mechanisms that are operative near
sharpened and blunted part of the notch respectively in a ductile material under mixed-mode loading. T
dominant mechanism (between two) establishes the stable crack growth direction.

Shih [15] examined a line crack subjected to combined mode | and mode Il loading using a “small sce
yielding” analysis of an elastic-plastic body under plane strain conditions (i.e. extending the HRR-solutic
[16,17] on mode | fracture to the mixed mode case). He showed that two parameters, the J-integral «
mixity parameter N, define completely the near-tip asymptotic stress field. The analysis was related only t
the tensile crack fracture mechanism (boundary conditions) for small scale yielding. Shih did not, howeve
take into consideration the fracture mechanism associated with shear crack. Evan if some attempts h
been made recently, there are currently no analytical results that predict the critical applied mixed ma
ratio characterizing the usually abrupt change in fracture mode.

All the above analytical and numerical analyses on the effect dominance fracture mechanism at mixe
mode loading focused on mode | boundary conditions. A similar investigation for both tensile and she
cracks in elastic-plastic solids has not been carried out in the literature. In this paper, steady-state statior
crack in elastic-plastic solids is simulated using dominant singularity solution governing the asymptoti
behavior at the crack tip. The analysis of the near-tip fields follows the works of Rice and Rosengre
Hutchinson and Shih [15-17]. Our investigation is carried out within the framework of mixed-mode
(combining modes | and II), plane strain, small scale yielding conditions.

PROBLEM FORMULATION AND SOLUTION

The dominant singularity solution for a cracked plate of a strain hardening material known as the HRI
singular field [16,17], was completed by the solution for the mixed-mode elastic-plastic stress distributio
corresponding only tensile fracture mechanism, presented by Shih [15]. According to these approach
the dominant singularity governing the asymptotic behavior of the stresses at the crack tip has the form
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where g, is the yield stress in simple tensioiK; is the plastic stress intensity factor, amd, is the
near-field mixity parameter [15]. The dimensionless functi&r@and 0. depend only on the polar angle
6,M, and n. In the above relationa and n are the hardening parameters of the Ramberg-Osgood power-
law. Under plane strain conditions, when the elastic strains are negligible and the dimensionless effect
stress is related to the stress components and the Airy dimensionless stress Tiunction
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In the present work the fourth-order differential equation governing the dominant singularity derived from
the compatibility equation has the following form with taking into account Eqn. 2
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Boundary conditions

For the total mixed mode loading case stress-free boundary conditions require

Oap(rtm)=o,,(r2m)=0 or @Em)=g(Em)=0 (4)
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We propose to complete the boundary conditions for mixed mode loading proceeding from the assumpti
that the dominant fracture mechanism establishes the stable crack growth direction. Thus, the dimension
stresses and strainsppropriate each fracture mechanism, has to have extremum along the crack grow
direction 8 = 8". For the case, dominated by tensile fracture mechanism, the crack growth direction i
normal to the maximum tensile stress and then
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In the case of the shear dominant fracture mechanism crack growth in the direction of maximum she
strain (stress). Thus we have to satisfy the following conditions
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Finally, the nonlinear compatibility equation 3 for plane strain small scale yielding was solved numericall
using an iteration scheme taking into account the above boundary conditions (Eqns.4-6). Our analyti
results concerning the dimensionless stresses distributions for tensile fracture boundary conditions un
plane strain, in general, confirm the study of Shih [15]. Unlike the investigation of Shih [15], in the preser
paper, the near-field mixity parameteév, ;, was obtained directly from botlr,, andg,, 6-distributions.

For shear fracture boundary conditions new results were obtained whose details are given in Figs.1-3

mixed mode small-scale yielding, the plastic stress intensity fiédton Eqn.1 is related to the numerical
value of the definite integraln(M p) that depends on the fracture an@jlethe strain-hardening exponemt
and the mixity parametei ,
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Values ofln(e* M p,n) are calculated for both fracture mechanism, i.e. for the tensile boundary condition:
and the shear one wherthanges from 2 to 13 aii, changes from O up to 1.



RESULTS AND DISCUSSION

In this work full range of mixed mode loadings from pure mode | up to pure mode Il are studied fo
materials withn = 2, 3, 5, 9 and 13. The mode mixity param#terand the definite integraj related to

plastic stress intensity factdt, was evaluated from two sets of elastic-plastic fields, one being the tensile
crack behavior field and another the shear crack behavior field. Strain hardening plasticity solutions f
small-scale yielding crack problems in plane strain by Eqns.3-6 are used for two competing fractu
mechanisms that are operative near a crack tip in a ductile material under mixed mode loading. The typi
O-variations of the dimensionless stress‘igjs and the effective stres@, are shown for both type of

boundary conditions in Fig.1. Results are displayed in these figures corresponding approximately
identical values of the mode mixity parameigy for each fracture mechanism. It must be noted that the

near-tip angular elastic-plastic stresses variations for the tensile crack and the shear crack are differ
Furthermore, it can be seen from Fig.1 that angular positiéh efhich determines crack growth direction
are different for the same value Mf, for both types of boundary conditions. The angular variations of

dimensionless tangential stre§ggand shear strairf, g are shown in Fig.2 for n=3 and n=13. These
distributions corresponding to full range of near-tip mixity paraméfer. The position of a maximum on

each curve determines of the crack growth direction within the limits of the examined fracture mechanisi
As already mentioned, maximum of tangential stré@gg corresponds to the tensile crack boundary

conditions, while maximum of shear strapy describes shear crack behavior. It is clear from our study

that the direction of crack extension under mixed mode loading is strongly dependent upon the domin:
fracture mechanism and work hardening characteristics of the material.

The dependences between the near-tip mixity parameter and the definite integral for both type of bound
conditions are presented in Fig.3laterestingly, as it follows from this figure, for each strain hardening
exponenn there is one total relationship between mixity paramitgrand numerical constahy for both

fracture mechanisms. It confirms existence of one common elastic-plastic stress intensityK facior

contrast an elastic situation when take place a superposition of two separate stress intensik§ taudors

K|| .

The crack angléd that determines of crack growth direction is function of the fracture mechanism, the
power hardening coefficient and mixity parameteM,. Figure 3,b show, respectively, variations 6f

with respect tan andM,. It must be noted that, in general case, under mixed mode loading there are n
mixed mode fracture. The stable crack under mixed mode loading conditions propagates only either a
tensile crack approximately in the direction normal to the maximum tangential stresses or only as a sh
crack in the maximum shear strain direction. As it follows from Fig.3,b the intersection area of separa
curves in coordinates of mixity parametdy versus crack growth directio, corresponding to each
(between two) dominating fracture mechanism, form small zone of the really mixed mode fracture. Tt
position of this zone of a crack unstable equilibrium correspond to change of the leading fractul
mechanism or, in other words, to the determination of the mixed mode ratio at which the transition of tf
fracture mode occurSo the change of the dominant fracture mechanism occurs in a range of values elast
mixity parameterM=0.65-0.72 or corresponding values of plastic mixity paraméigr0.75-0.78 at

6 =35°+40°. The found numerical values of elastic-plastic parameters describing of transition zone are we
agreed with experimental data for the ferritic steels [12] which show that all change in fracture mode tal
place at a relative constant value of mixity paramktgr0.68. The dependences of the definite integral

on crack growth direction ang are presented in Fig.3,c.

CONCLUSIONS

The fact that dominant fracture mechanism (between two) establishes the stable crack growth direction w
analyzed and discussed. It is assumed that under mixed mode loading shear crack propagation would oc
in a sharpens side of the notch tip while crack growth normal to the maximum tensile stresses occur near
the blunted part of the notch. From this point of view, nonlinear analysis has been made by solving the
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Figure 1: Angular stress distributions for different mode-mixity M
corresponding to strain hardening n=5
1'5rr y 2'599, 3-5r9, 4'5:e

partial differential equations governing the dominant singularity to study the deformation, stress and stre
near the crack tip under mixed mode plane strain loading conditions. In the present work was completed
boundary conditions for compatibility equation proceeding from the assumption that the stresses have
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Figure 2: Variations of tangential stress and shear strain for different
near-tip mixities corresponding to n=3 and n=13

to have extremum along the crack growth direction. Corresponding each dominant fracture mechanism n
crack tip stress and strain fields are obtained for the complete range of mixed mode loading between Mot
and Mode Il. By means of numerical investigation of mixed mode loading problems it is obtained
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that there is only one total relationship between mixity paranmgerand numerical constarif, for both

fracture mechanisms. It is established that the intersection area of separate curves in coordinates of mi
parameter M versus crack growth direction, corresponding to each (between two) dominating fractur
mechanism, form small zone of the really mixed mode fracture. The position of this zone of a crac
unstable equilibrium correspond to change of the leading fracture mechanism.
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