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ABSTRACT

In order to evaluate the mechanical behavior around stationary small scale yielding crack tip for plane
strain, the asymptotic governing equation and their boundary conditions are formulated by the light of
fracture mechanisms. A total  deformation theory of plasticity with a power-law hardening is employed.
The analysis of the near-tip fields are obtained for both tensile and shear boundary conditions, the complete
range of mixity parameter and different strain hardening levels. Details of the mixed-mode fracture under
mixed-mode loading and change fracture mechanism are also given. It is established that the intersection
area of separate curves in coordinates of mixity parameter Mp versus crack growth direction, corresponding
to each (between two) dominating fracture mechanism,  form small zone of the really mixed mode fracture.
The position of this zone of a crack unstable equilibrium correspond to change of the leading fracture
mechanism or to the determination of the mixed mode ratio at which the transition of the fracture mode
occur. The  numerical values of elastic-plastic parameters describing of transition zone are well agreed with
experimental data found in the literature which show that all change in fracture mode take place at a relative
constant value of mixity parameter. By means of numerical investigation of mixed-mode loading problems
it is obtained that there is only one total relationship between mixity parameter Mp and numerical constant
In  for both fracture mechanisms.

INTRODUCTION

 One of the important points is that, for a large number of mixed-mode crack growth problems of which we
are aware, there are two fundamentally distinct classes of growth: maximum principal stress-dominated and
shear-dominated. This is true regardless of whether we consider static or cyclic loading conditions. Another
point is the intimate connection of the crack tip displacement concept to mixed-mode elastic-plastic fracture
and fatigue processes. Several elastic-plastic finite element analyses [1-5] and experimental investigations
[6-14] showed non-uniform deformation and damage fields near an initially smooth notch tip under mixed
mode loading. Aoki et al [1] predict that two competing process zone may be associated with the crack tip;
one process zone, dominated by tensile stress and the other dominated by shear stress. The side of the
notch, dominated by tensile stress, blunts, while the other side, dominated by shear strains, sharpens. It was
shown in [11-14] that the stable crack under mixed-mode loading conditions propagates either as a mode I
crack approximately in the direction normal to the maximum tangential stresses or as a shear crack in the
maximum strain direction. It is possible that material failure due to shear crack propagation in the direction
of maximum shear strains would occur in the localized band of intense plastic strain (referred in [11] as
“shear crack”). The highest tensile hydrostatic stress and notch-tip constraint always occur near the blunted



part of the notch. In this region the crack growth direction is normal to the maximum tensile stresses. This
type of mixed-mode ductile fracture mechanism is referred in [11] as “tensile crack” growth. It is clear from
the preceding discussion that there are two competing fracture mechanisms that are operative near the
sharpened and blunted part of the notch respectively in a ductile material under mixed-mode loading. The
dominant mechanism (between two) establishes the stable crack growth direction.
 Shih [15] examined a line crack subjected to combined mode I and mode II loading using a “small scale
yielding” analysis of an elastic-plastic body under plane strain conditions (i.e. extending the HRR-solution
[16,17]  on mode I fracture to the mixed mode case). He showed that two parameters, the J-integral and
mixity parameter Mp, define completely the near-tip asymptotic stress field. The analysis was related only to
the tensile crack fracture mechanism (boundary conditions) for small scale yielding. Shih did not, however,
take into consideration the fracture mechanism associated with shear crack. Evan if some attempts have
been made recently, there are currently no analytical results that predict the critical applied mixed mode
ratio characterizing the usually abrupt change in fracture mode.
 All the above analytical and numerical analyses on the effect dominance fracture mechanism at mixed-
mode loading focused on mode I boundary conditions. A similar investigation for both tensile and shear
cracks in elastic-plastic solids has not been carried out in the literature. In this paper, steady-state stationary
crack in elastic-plastic solids is simulated using dominant singularity solution governing the asymptotic
behavior at the crack tip. The analysis of the near-tip fields follows the works of Rice and Rosengren,
Hutchinson and Shih [15-17]. Our investigation is carried out within the framework of mixed-mode
(combining modes I and II), plane strain, small scale yielding conditions.

PROBLEM  FORMULATION  AND  SOLUTION

The dominant singularity solution for a cracked plate of a strain hardening material known as the HRR-
singular field [16,17], was completed by the solution for the mixed-mode elastic-plastic stress distribution,
corresponding only tensile fracture mechanism, presented by Shih  [15].  According to these approaches,
the dominant singularity governing the asymptotic behavior of the stresses at the crack tip has the form
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where  σ 0   is the yield stress in simple tension,  K M
p  is the plastic stress intensity factor, and  M p   is the

near-field mixity parameter [15]. The dimensionless functions ~σ ij and  ~σ e depend only on the polar angle

θ , M p  and  n. In the above relation,  α and  n are the hardening parameters of the Ramberg-Osgood power-

law. Under plane strain conditions, when the elastic strains are negligible and the dimensionless effective

stress is related to the stress components and the Airy dimensionless stress function 
~φ   

                                                        ( )~ ~ ~ ~σ σ σ σθθ θe rr r
2 2 23

4
3= − +                                                                 (2)

where     ~
~

~
σ φ ∂ φ

∂θrr s= +
2

2 ,  ( )~ ~σ φθθ = −s s 1 , ( )~
~

σ ∂φ
∂θθr s= −1  ,  s

n

n
= +

+
2 1

1

In the present work the fourth-order differential equation governing the dominant singularity derived from
the compatibility equation has the following form with taking into account Eqn. 2
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Boundary conditions

For the total mixed mode loading case stress-free boundary conditions require
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We propose to complete the boundary conditions for mixed mode loading proceeding from the assumption
that the dominant fracture mechanism establishes the stable crack growth direction. Thus, the dimensionless
stresses and strains, appropriate each fracture mechanism, has to have extremum along the crack growth

direction θ θ= ∗ . For the case, dominated by tensile fracture mechanism, the crack growth direction is
normal to the maximum tensile stress and then
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In the case of the shear dominant fracture mechanism crack growth in the direction of maximum shear
strain (stress). Thus we have to satisfy the following conditions
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Finally, the nonlinear compatibility equation 3 for  plane strain small scale yielding was solved numerically
using an iteration scheme  taking into account the above boundary conditions  (Eqns.4-6). Our analytical
results concerning the dimensionless stresses distributions for tensile fracture boundary conditions under
plane strain, in general, confirm the study of Shih [15]. Unlike the investigation of Shih [15], in the present
paper, the near-field mixity parameter, M p , was obtained directly from both  ~σ θθ  and ~σ θr   θ-distributions.

For shear fracture boundary conditions new results were obtained whose details are given in Figs.1-3. In

mixed mode small-scale yielding, the plastic stress intensity factorK M
p  in Eqn.1 is related to the numerical

value of the definite integral ( )I Mn p  that depends on the fracture angle θ*, the strain-hardening exponent n

and the mixity parameter M p
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Values of ( )n,M,I p
*

n θ  are calculated for both fracture mechanism, i.e. for the tensile boundary conditions

and the shear one when n changes from 2 to 13 andM p  changes  from 0 up to 1.



RESULTS  AND  DISCUSSION

In this work full range of mixed mode loadings from pure mode I up to pure mode II are studied for
materials with n = 2, 3, 5, 9 and 13. The mode mixity  parameterM p  and the definite integral In related to

plastic stress intensity factor K M
p  was evaluated from two sets of elastic-plastic fields, one being the tensile

crack behavior field and another the shear crack behavior field. Strain hardening plasticity solutions for
small-scale yielding crack problems in plane strain by Eqns.3-6 are used for two competing fracture
mechanisms that are operative near a crack tip in a ductile material under mixed mode loading. The typical
θ-variations of the dimensionless stresses ij

~σ  and the effective stress e
~σ  are shown for both type of

boundary conditions in Fig.1. Results are displayed in these figures corresponding approximately to
identical values of  the mode mixity parameterM p  for each fracture mechanism. It must be noted that the

near-tip angular elastic-plastic stresses variations for the tensile crack and the shear crack are different.
Furthermore, it can be seen from Fig.1 that angular position of θ*  which determines crack growth direction
are different for the same value ofM p  for both types of boundary conditions. The angular variations of

dimensionless tangential stress θθσ~ and shear strain θε r
~ are shown in Fig.2 for n=3 and n=13. These

distributions corresponding to full range of near-tip mixity parameter M p . The position of a maximum on

each curve determines of the crack growth direction within the limits of the examined fracture mechanism.
As already mentioned, maximum of  tangential stress θθσ~ corresponds to the tensile crack boundary

conditions, while maximum of  shear strain θε r
~  describes shear crack behavior. It is clear from our study

that the direction of crack extension under mixed mode loading is strongly dependent upon the dominant
fracture mechanism and work hardening characteristics of the material.
The dependences between the near-tip mixity parameter and the definite integral for both type of boundary
conditions are presented in Fig.3,a. Interestingly, as it follows from this figure, for each strain hardening
exponent n there is one total relationship between mixity parameter M p  and numerical constant In for both

fracture mechanisms. It confirms existence of one common elastic-plastic stress intensity factor K M
p  in

contrast an elastic situation when take place a superposition of two separate stress intensity factors KI and
KII .
The crack angle θ* that determines of crack growth direction is function of the fracture mechanism, the
power hardening coefficient n and mixity parameter Mp. Figure 3,b show, respectively, variations of  θ*

with respect to n and Mp.  It must be noted that, in general case, under mixed mode loading there are not
mixed mode fracture. The stable crack under mixed mode loading conditions propagates only either as a
tensile crack approximately in the direction normal to the maximum tangential stresses or only as a shear
crack in the maximum shear strain direction. As it follows from Fig.3,b the intersection area of separate
curves in coordinates of mixity parameter Mp versus crack growth direction θ*, corresponding to each
(between two) dominating fracture mechanism,  form small zone of the really mixed mode fracture. The
position of this zone of a crack unstable equilibrium correspond to change of the leading fracture
mechanism or, in other words, to the determination of the mixed mode ratio at which the transition of the
fracture mode occur.  So, the change of the dominant fracture mechanism occurs in a range of values elastic
mixity parameter Me=0.65÷0.72 or corresponding values of plastic mixity parameter Mp=0.75÷0.78 at
θ*=35°÷40°. The found numerical values of elastic-plastic parameters describing of transition zone are well
agreed with experimental data for the ferritic steels [12] which show that all change in fracture mode take
place at a relative constant value of mixity parameter Me=0.68. The dependences of the definite integral In

on crack growth direction angle θ* are presented in Fig.3,c.

CONCLUSIONS

The fact that dominant fracture mechanism (between two) establishes the stable crack growth direction was
analyzed and discussed. It is assumed that under mixed mode loading shear crack propagation would occur
in a sharpens side of the notch tip while crack growth normal to the maximum tensile stresses occur near
the blunted part of the notch. From this point of view, nonlinear analysis has been made by solving the
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Figure 1: Angular stress distributions for different mode-mixity Mp

corresponding to strain hardening n=5
1 - rr

~σ ,  2 - θθσ~ , 3 - θσ r
~ , 4 - e

~σ

partial differential equations governing the dominant singularity to study the deformation, stress and strain
near the crack tip under mixed mode plane strain loading conditions. In the present work was completed the
boundary conditions  for compatibility equation proceeding from the assumption that  the stresses have
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Figure 2:  Variations of tangential stress and shear strain for different
near-tip mixities corresponding to n=3 and n=13

to have extremum along the crack growth direction. Corresponding each dominant fracture mechanism near
crack tip stress and strain fields are obtained for the complete range of mixed mode loading between Mode I
and Mode II. By means  of numerical  investigation of mixed mode loading problems it  is obtained
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Figure 3:  Integration parameter In and crack angle θ* as functions
of  near-tip mode-mixity Mp



that there is only one total relationship between mixity parameter pM  and numerical constant nI  for both

fracture mechanisms. It is established that the intersection area of separate curves in coordinates of mixity
parameter Mp versus crack growth direction, corresponding to each (between two) dominating fracture
mechanism,  form small zone of the really mixed mode fracture. The position of this zone of a crack
unstable equilibrium correspond to change of the leading fracture mechanism.
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